Advertisement

Early Life Developmental Programming of the GH/IGF Axis and Long-Term Health

  • Clare M. Reynolds
  • Mark H. VickersEmail author
Chapter
Part of the Healthy Ageing and Longevity book series (HAL, volume 9)

Abstract

It has now well established that alterations in the environment during early life development can have effects on the health of the offspring across the lifecourse and evidence for transmission of these adverse disease traits to future generations. A key component underpinning this early life developmental programming is that of dysregulation of the growth hormone-insulin-like growth factor (GH-IGF) axis. Phenotypic outcomes in programmed offspring closely resemble those associated with GH deficiency (GHD), including increased fat mass, altered insulin sensitivity and cardiovascular disorders. The GH-IGF axis plays a key developmental role in essentially all tissues and organs and work across a wide range of animal models has suggested that manipulation of this axis in the early life period can ameliorate the effects of adverse developmental programming, albeit in a sex-specific manner. Further understanding of how different exposures in the early life period, including altered nutrition, impact upon this axis is essential to define translatable strategies to reverse the consequences of early life adversity and improve health outcomes across the lifecourse.

Keywords

Developmental programming Growth hormone Growth factors Early life nutrition Obesity Energy balance Metabolic syndrome Epigenetics 

References

  1. Aiken CE, Ozanne SE (2014) Transgenerational developmental programming. Hum Reprod Update 20(1):63–75PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alberry M, Soothill P (2007) Management of fetal growth restriction. Arch Dis Child Fetal Neonatal Ed 92(1):F62–F67PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alvarez-Nava F, Lanes R (2017) GH/IGF-1 Signaling and current knowledge of epigenetics; a review and considerations on possible therapeutic options. Int J Mol Sci 18(10)PubMedCentralCrossRefGoogle Scholar
  4. Baronio F, Mazzanti L, Girtler Y, Tamburrino F, Fazzi A, Lupi F et al (2016) The influence of growth hormone treatment on glucose homeostasis in growthhormone-deficient children: a six-year follow-up study. Horm Res Paediatr 86(3):196–200PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bassett NS, Oliver MH, Breier BH, Gluckman PD (1990) The effect of maternal starvation on plasma insulin-like growth factor I concentrations in the late gestation ovine fetus. Pediatr Res 27(4 Pt 1):401–404PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bateson P, Gluckman P, Hanson M (2014) The biology of developmental plasticity and the predictive adaptive response hypothesis. J Physiol 592(11):2357–2368PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bauer MK, Harding JE, Breier BH, Gluckman PD (2000) Exogenous GH infusion to late-gestational fetal sheep does not alter fetal growth and metabolism. J Endocrinol 166(3):591–597PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bloomfield FH, van Zijl PL, Bauer MK, Phua HH, Harding JE (2006) Effect of pulsatile growth hormone administration to the growth-restricted fetal sheep on somatotrophic axis gene expression in fetal and placental tissues. Am J Physiol Endocrinol Metab 291(2):E333–E339PubMedCrossRefPubMedCentralGoogle Scholar
  9. Brameld JM, Mostyn A, Dandrea J, Stephenson TJ, Dawson JM, Buttery PJ et al (2000) Maternal nutrition alters the expression of insulin-like growth factors in fetal sheep liver and skeletal muscle. J Endocrinol 167(3):429–437PubMedCrossRefPubMedCentralGoogle Scholar
  10. Carr DJ, Milne JS, Aitken RP, Adam CL, Wallace JM (2015) Hepatic IGF1 DNA methylation is influenced by gender but not by intrauterine growth restriction in the young lamb. J Dev Orig Health Dis 6(6):558–572PubMedCrossRefPubMedCentralGoogle Scholar
  11. Caufriez A, Frankenne F, Hennen G, Copinschi G (1993) Regulation of maternal IGF-I by placental GH in normal and abnormal human pregnancies. Am J Physiol 265(4 Pt 1):E572–E577PubMedPubMedCentralGoogle Scholar
  12. Chen HS, Wu TE, Hsiao LC, Lin SH (2012) Interaction between glycaemic control and serum insulin-like growth factor 1 on the risk of retinopathy in type 2 diabetes. Eur J Clin Invest 42(4):447–454PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chia DJ, Rotwein P (2010) Defining the epigenetic actions of growth hormone: acute chromatin changes accompany GH-activated gene transcription. Mol Endocrinol 24(10):2038–2049PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chia DJ, Young JJ, Mertens AR, Rotwein P (2010) Distinct alterations in chromatin organization of the two IGF-I promoters precede growth hormone-induced activation of IGF-I gene transcription. Mol Endocrinol 24(4):779–789PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cohen P, Clemmons DR, Rosenfeld RG (2000) Does the GH-IGF axis play a role in cancer pathogenesis? Growth Horm IGF Res 10(6):297–305PubMedCrossRefPubMedCentralGoogle Scholar
  16. Constancia M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R et al (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417(6892):945–948PubMedCrossRefPubMedCentralGoogle Scholar
  17. Coulter CL, Han VK (1996a) The pattern of expression of insulin-like growth factor (IGF). IGF-I receptor and IGF binding protein (IGFBP) mRNAs in the rhesus monkey placenta suggests a paracrine mode of IGF-IGFBP interaction in placental development. Placenta 17(7):451–460PubMedCrossRefPubMedCentralGoogle Scholar
  18. Coulter CL, Han VK (1996b) Expression of insulin-like growth factor-II and IGF-binding protein-1 mRNAs in term rhesus monkey placenta: comparison with human placenta. Horm Res 45(3–5):167–171PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cutfield WS, Wilton P, Bennmarker H, Albertsson-Wikland K, Chatelain P, Ranke MB et al (2000) Incidence of diabetes mellitus and impaired glucose tolerance in children and adolescents receiving growth-hormone treatment. Lancet 355(9204):610–613PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cutfield WS, Lindberg A, Rapaport R, Wajnrajch MP, Saenger P (2006) Safety of growth hormone treatment in children born small for gestational age: the US trial and KIGS analysis. Horm Res 65(Suppl 3):153–159PubMedGoogle Scholar
  21. Dauncey MJ, Burton KA, Tivey DR (1994) Nutritional modulation of insulin-like growth factor-I expression in early postnatal piglets. Pediatr Res 36(1 Pt 1):77–84PubMedCrossRefGoogle Scholar
  22. de Boo HA, Eremia SC, Bloomfield FH, Oliver MH, Harding JE (2008) Treatment of intrauterine growth restriction with maternal growth hormone supplementation in sheep. Am J Obstet Gynecol 199(5):559 e1–9Google Scholar
  23. de Brun V, Meikle A, Casal A, Sequeira M, Contreras-Solis I, Carriquiry M et al (2015) Periconceptional undernutrition modifies endocrine profiles and hepatic gene expression in sheep. J Anim Physiol Anim Nutr (Berl) 99(4):710–718CrossRefGoogle Scholar
  24. Dobson CC, Thevasundaram K, Mongillo DL, Winterborn A, Holloway AC, Brien JF et al (2014) Chronic prenatal ethanol exposure alters expression of central and peripheral insulin signaling molecules in adult guinea pig offspring. Alcohol 48(7):687–693PubMedCrossRefGoogle Scholar
  25. Donzeau A, Bouhours-Nouet N, Fauchard M, Decrequy A, Mathieu E, Boux de Casson F et al (2015) Birth weight is associated with the IGF-1 response to GH in children: programming of the anabolic action of GH? J Clin Endocrinol Metab 100(8):2972–2978CrossRefGoogle Scholar
  26. Duchamp C, Burton KA, Herpin P, Dauncey MJ (1996) Perinatal ontogeny of porcine growth hormone receptor gene expression is modulated by thyroid status. Eur J Endocrinol 134(4):524–531PubMedCrossRefGoogle Scholar
  27. Dunn GA, Bale TL (2009) Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150(11):4999–5009PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dwyer CM, Stickland NC (1992) The effects of maternal undernutrition on maternal and fetal serum insulin-like growth factors, thyroid hormones and cortisol in the guinea pig. J Dev Physiol 18(6):303–313PubMedGoogle Scholar
  29. Eleswarapu S, Gu Z, Jiang H (2008) Growth hormone regulation of insulin-like growth factor-I gene expression may be mediated by multiple distal signal transducer and activator of transcription 5 binding sites. Endocrinology 149(5):2230–2240PubMedPubMedCentralCrossRefGoogle Scholar
  30. Elias SG, Keinan-Boker L, Peeters PH, Van Gils CH, Kaaks R, Grobbee DE et al (2004a) Long term consequences of the 1944–1945 Dutch famine on the insulin-like growth factor axis. Int J Cancer 108(4):628–630PubMedCrossRefGoogle Scholar
  31. Elias SG, Peeters PH, Grobbee DE, van Noord PA (2004b) Breast cancer risk after caloric restriction during the 1944–1945 Dutch famine. J Natl Cancer Inst 96(7):539–546PubMedCrossRefGoogle Scholar
  32. Eremia SC, de Boo HA, Bloomfield FH, Oliver MH, Harding JE (2007) Fetal and amniotic insulin-like growth factor-I supplements improve growth rate in intrauterine growth restriction fetal sheep. Endocrinology 148(6):2963–2972PubMedCrossRefGoogle Scholar
  33. Ferraro ZM, Barrowman N, Prud’homme D, Walker M, Wen SW, Rodger M et al (2012a) Excessive gestational weight gain predicts large for gestational age neonates independent of maternal body mass index. J Matern Fetal Neonatal Med 25(5):538–542PubMedCrossRefGoogle Scholar
  34. Ferraro ZM, Qiu Q, Gruslin A, Adamo KB (2012b) Characterization of the insulin-like growth factor axis in term pregnancies complicated by maternal obesity. Hum Reprod 27(8):2467–2475PubMedCrossRefGoogle Scholar
  35. Field ME, Anthony RV, Engle TE, Archibeque SL, Keisler DH, Han H (2015) Duration of maternal undernutrition differentially alters fetal growth and hormone concentrations. Domest Anim Endocrinol 51:1–7PubMedCrossRefGoogle Scholar
  36. Fowden AL, Coan PM, Angiolini E, Burton GJ, Constancia M (2011) Imprinted genes and the epigenetic regulation of placental phenotype. Prog Biophys Mol Biol 106(1):281–288PubMedCrossRefGoogle Scholar
  37. Fu Q, Yu X, Callaway CW, Lane RH, McKnight RA (2009) Epigenetics: intrauterine growth retardation (IUGR) modifies the histone code along the rat hepatic IGF-1 gene. FASEB J 23(8):2438–2449PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fu Q, McKnight RA, Callaway CW, Yu X, Lane RH, Majnik AV (2015) Intrauterine growth restriction disrupts developmental epigenetics around distal growth hormone response elements on the rat hepatic IGF-1 gene. FASEB J 29(4):1176–1184PubMedCrossRefPubMedCentralGoogle Scholar
  39. Fung CM, Yang Y, Fu Q, Brown AS, Yu B, Callaway CW et al (2015) IUGR prevents IGF-1 upregulation in juvenile male mice by perturbing postnatal IGF-1 chromatin remodeling. Pediatr Res 78(1):14–23PubMedCrossRefGoogle Scholar
  40. Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359(1):61–73PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gong L, Pan YX, Chen H (2010) Gestational low protein diet in the rat mediates IGF2 gene expression in male offspring via altered hepatic DNA methylation. Epigenetics 5(7):619–626PubMedCrossRefGoogle Scholar
  42. Gray C, Li M, Reynolds CM, Vickers MH (2013) Pre-weaning growth hormone treatment reverses hypertension and endothelial dysfunction in adult male offspring of mothers undernourished during pregnancy. PLoS ONE 8(1):e53505PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gray C, Li M, Reynolds CM, Vickers MH (2014) Let-7 miRNA profiles are associated with the reversal of left ventricular hypertrophy and hypertension in adult male offspring from mothers undernourished during pregnancy following pre-weaning growth hormone treatment. Endocrinology 155(12):4808–4817PubMedCrossRefGoogle Scholar
  44. Haggarty P, Hoad G, Horgan GW, Campbell DM (2013) DNA methyltransferase candidate polymorphisms, imprinting methylation, and birth outcome. PLoS ONE 8(7):e68896PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20CrossRefGoogle Scholar
  46. Harding JE, Bloomfield FH (2004) Prenatal treatment of intrauterine growth restriction: lessons from the sheep model. Pediatr Endocrinol Rev 2(2):182–192PubMedGoogle Scholar
  47. Hattori Y, Takeda T, Fujii M, Taura J, Ishii Y, Yamada H (2014) Dioxin-induced fetal growth retardation: the role of a preceding attenuation in the circulating level of glucocorticoid. Endocrine 47(2):572–580PubMedCrossRefGoogle Scholar
  48. He J, Zhang A, Fang M, Fang R, Ge J, Jiang Y et al (2013) Methylation levels at IGF2 and GNAS DMRs in infants born to preeclamptic pregnancies. BMC Genom 14:472CrossRefGoogle Scholar
  49. Heasman L, Brameld J, Mostvn A, Budge H, Dawson J, Buttery P et al (2000) Maternal nutrient restriction during early to mid gestation alters the relationship between insulin-like growth factor I and bodyweight at term in fetal sheep. Reprod Fertil Dev 12(7–8):345–350PubMedCrossRefGoogle Scholar
  50. Hoeflich A, Reisinger R, Lahm H, Kiess W, Blum WF, Kolb HJ et al (2001) Insulin-like growth factor-binding protein 2 in tumorigenesis: protector or promoter? Cancer Res 61(24):8601–8610PubMedGoogle Scholar
  51. Horikawa R, Tanaka T, Nishinaga H, Ogawa Y, Yokoya S (2017) Evaluation of growth hormone treatment efficacy in short Japanese children born small for gestational age: five-year treatment outcome and impact on puberty. Clin Pediatr Endocrinol Case Rep Clin investig 26(2):63–72CrossRefGoogle Scholar
  52. Huang RC, Galati JC, Burrows S, Beilin LJ, Li X, Pennell CE et al (2012) DNA methylation of the IGF2/H19 imprinting control region and adiposity distribution in young adults. Clin Epigenetics 4(1):21PubMedPubMedCentralCrossRefGoogle Scholar
  53. Jones CT, Lafeber HN, Rolph TP, Parer JT (1990) Studies on the growth of the fetal guinea pig. The effects of nutritional manipulation on prenatal growth and plasma somatomedin activity and insulin-like growth factor concentrations. J Dev Physiol 13(4):189–197Google Scholar
  54. Jung H, Rosilio M, Blum WF, Drop SL (2008) Growth hormone treatment for short stature in children born small for gestational age. Adv Ther 25(10):951–978PubMedCrossRefGoogle Scholar
  55. Jungheim ES, Schoeller EL, Marquard KL, Louden ED, Schaffer JE, Moley KH (2010) Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology 151(8):4039–4046PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kadakia R, Josefson J (2016) The relationship of insulin-like growth factor 2 to fetal growth and adiposity. Horm Res Paediatr 85(2):75–82PubMedCrossRefGoogle Scholar
  57. Kappeler L, De Magalhaes Filho C, Leneuve P, Xu J, Brunel N, Chatziantoniou C et al (2009) Early postnatal nutrition determines somatotropic function in mice. Endocrinology 150(1):314–323PubMedCrossRefGoogle Scholar
  58. Kavitha JV, Rosario FJ, Nijland MJ, McDonald TJ, Wu G, Kanai Y et al (2014) Down-regulation of placental mTOR, insulin/IGF-I signaling, and nutrient transporters in response to maternal nutrient restriction in the baboon. FASEB J 28(3):1294–1305PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kim HW, Kim KN, Choi YJ, Chang N (2013) Effects of paternal folate deficiency on the expression of insulin-like growth factor-2 and global DNA methylation in the fetal brain. Mol Nutr Food Res 57(4):671–676PubMedCrossRefGoogle Scholar
  60. Koch JM, Wilmoth TA, Wilson ME (2010) Periconceptional growth hormone treatment alters fetal growth and development in lambs. J Anim Sci 88(5):1619–1625PubMedCrossRefGoogle Scholar
  61. Lappas M (2015) Insulin-like growth factor-binding protein 1 and 7 concentrations are lower in obese pregnant women, women with gestational diabetes and their fetuses. J Perinatol 35(1):32–38PubMedCrossRefGoogle Scholar
  62. Larnkjaer A, Ong KK, Carlsen EM, Ejlerskov KT, Molgaard C, Michaelsen KF (2018) The influence of maternal obesity and breastfeeding on infant appetite- and growth-related hormone concentrations: the SKOT cohort studies. Horm Res Paediatr 1–11Google Scholar
  63. Li M, Reynolds CM, Gray C, Vickers MH (2015) Preweaning GH treatment normalizes body growth trajectory and reverses metabolic dysregulation in adult offspring after maternal undernutrition. Endocrinology 156(9):3228–3238PubMedCrossRefGoogle Scholar
  64. Lupu F, Terwilliger JD, Lee K, Segre GV, Efstratiadis A (2001) Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol 229(1):141–162PubMedCrossRefGoogle Scholar
  65. Martin-Estal I, de la Garza RG, Castilla-Cortazar I (2016) Intrauterine growth retardation (IUGR) as a novel condition of insulin-like growth factor-1 (IGF-1) deficiency. Rev Physiol Biochem Pharmacol 170:1–35PubMedCrossRefGoogle Scholar
  66. Mazziotti G, Giustina A (2013) Glucocorticoids and the regulation of growth hormone secretion. Nat Rev Endocrinol 9(5):265–276PubMedCrossRefGoogle Scholar
  67. Mitsuya K, Parker AN, Liu L, Ruan J, Vissers MCM, Myatt L (2017) Alterations in the placental methylome with maternal obesity and evidence for metabolic regulation. PLoS ONE 12(10):e0186115PubMedPubMedCentralCrossRefGoogle Scholar
  68. Niu ZR, Han T, Sun XL, Luan LX, Gou WL, Zhu XM (2018) MicroRNA-30a-3p is overexpressed in the placentas of patients with preeclampsia and affects trophoblast invasion and apoptosis by its effects on IGF-1. Am J Obstet Gynecol 218(2):249 e1–e12PubMedCrossRefGoogle Scholar
  69. Oberbauer AM (2013) The regulation of IGF-1 gene transcription and splicing during development and aging. Front Endocrinol 4:39CrossRefGoogle Scholar
  70. Oberbauer AM (2015) Developmental programming: the role of growth hormone. J Anim Sci Biotechnol 6(1):8PubMedPubMedCentralCrossRefGoogle Scholar
  71. Oliver MH, Harding JE, Breier BH, Gluckman PD (1996) Fetal insulin-like growth factor (IGF)-I and IGF-II are regulated differently by glucose or insulin in the sheep fetus. Reprod Fertil Dev 8(1):167–172PubMedCrossRefPubMedCentralGoogle Scholar
  72. Ouni M, Castell AL, Linglart A, Bougneres P (2015) Genetic and epigenetic modulation of growth hormone sensitivity studied with the IGF-1 generation test. J Clin Endocrinol Metab 100(6):E919–E925PubMedPubMedCentralCrossRefGoogle Scholar
  73. Podlutsky A, Valcarcel-Ares MN, Yancey K, Podlutskaya V, Nagykaldi E, Gautam T et al (2017) The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer. GeroScience 39(2):147–160PubMedPubMedCentralCrossRefGoogle Scholar
  74. Radulescu L, Munteanu O, Popa F, Cirstoiu M (2013) The implications and consequences of maternal obesity on fetal intrauterine growth restriction. J Med Life 6(3):292–298PubMedPubMedCentralGoogle Scholar
  75. Randhawa R, Cohen P (2005) The role of the insulin-like growth factor system in prenatal growth. Mol Genet Metab 86(1–2):84–90PubMedCrossRefPubMedCentralGoogle Scholar
  76. Reece EA, Wiznitzer A, Le E, Homko CJ, Behrman H, Spencer EM (1994) The relation between human fetal growth and fetal blood levels of insulin-like growth factors I and II, their binding proteins, and receptors. Obstet Gynecol 84(1):88–95PubMedPubMedCentralGoogle Scholar
  77. Reik W, Constancia M, Fowden A, Anderson N, Dean W, Ferguson-Smith A et al (2003) Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J Physiol 547(Pt 1):35–44PubMedPubMedCentralCrossRefGoogle Scholar
  78. Reynolds CM, Li M, Gray C, Vickers MH (2013a) Pre-weaning growth hormone treatment ameliorates adipose tissue insulin resistance and inflammation in adult male offspring following maternal undernutrition. Endocrinology 154(8):2676–2686PubMedCrossRefGoogle Scholar
  79. Reynolds CM, Li M, Gray C, Vickers MH (2013b) Pre-weaning growth hormone treatment ameliorates bone marrow macrophage inflammation in adult male rat offspring following maternal undernutrition. PLoS ONE 8(7):e68262PubMedPubMedCentralCrossRefGoogle Scholar
  80. Reynolds CM, Perry JK, Vickers MH (2017) Manipulation of the growth hormone-insulin-like growth factor (GH-IGF) axis: a treatment strategy to reverse the effects of early life developmental programming. Int J Mol Sci 18(8)PubMedCentralCrossRefGoogle Scholar
  81. Sas T, Mulder P, Hokken-Koelega A (2000) Body composition, blood pressure, and lipid metabolism before and during long-term growth hormone (GH) treatment in children with short stature born small for gestational age either with or without GH deficiency. J Clin Endocrinol Metabol 85(10):3786–3792Google Scholar
  82. Scacchi M, Pincelli AI, Cavagnini F (1999) Growth hormone in obesity. Int J Obes Relat Metab Disord 23(3):260–271PubMedCrossRefPubMedCentralGoogle Scholar
  83. Schernhammer ES, Holly JM, Hunter DJ, Pollak MN, Hankinson SE (2006) Insulin-like growth factor-I, its binding proteins (IGFBP-1 and IGFBP-3), and growth hormone and breast cancer risk in The Nurses Health Study II. Endocr Relat Cancer 13(2):583–592PubMedCrossRefPubMedCentralGoogle Scholar
  84. Schnoebelen-Combes S, Louveau I, Postel-Vinay MC, Bonneau M (1996) Ontogeny of GH receptor and GH-binding protein in the pig. J Endocrinol 148(2):249–255PubMedCrossRefPubMedCentralGoogle Scholar
  85. Setia S, Sridhar MG (2009) Changes in GH/IGF-1 axis in intrauterine growth retardation: consequences of fetal programming? Horm Metab Res 41(11):791–798PubMedCrossRefPubMedCentralGoogle Scholar
  86. Sharples AP, Stewart CE, Seaborne RA (2016) Does skeletal muscle have an ‘epi’-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise. Aging Cell 15(4):603–616PubMedPubMedCentralCrossRefGoogle Scholar
  87. Smith T, Sloboda DM, Saffery R, Joo E, Vickers MH (2013) Maternal nutritional history modulates the hepatic IGF-IGFBP axis in adult male rat offspring. EndocrineGoogle Scholar
  88. Sohi G, Revesz A, Ramkumar J, Hardy DB (2015) Higher hepatic miR-29 expression in undernourished male rats during the postnatal period targets the long-term repression of IGF-1. Endocrinology 156(9):3069–3076PubMedCrossRefPubMedCentralGoogle Scholar
  89. Soubry A, Schildkraut JM, Murtha A, Wang F, Huang Z, Bernal A et al (2013) Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a newborn epigenetics study (NEST) cohort. BMC Med 11:29PubMedPubMedCentralCrossRefGoogle Scholar
  90. Stochholm K, Johannsson G (2015) Reviewing the safety of GH replacement therapy in adults. Growth Horm IGF Res 25(4):149–157PubMedCrossRefGoogle Scholar
  91. St-Pierre J, Hivert MF, Perron P, Poirier P, Guay SP, Brisson D et al (2012) IGF2 DNA methylation is a modulator of newborn’s fetal growth and development. Epigenetics 7(10):1125–1132PubMedPubMedCentralCrossRefGoogle Scholar
  92. Symonds ME, Pearce S, Bispham J, Gardner DS, Stephenson T (2004) Timing of nutrient restriction and programming of fetal adipose tissue development. Proc Nutr Soc 63(3):397–403PubMedCrossRefPubMedCentralGoogle Scholar
  93. Tarantal AF, Gargosky SE (1995) Characterization of the insulin-like growth factor (IGF) axis in the serum of maternal and fetal macaques (Macaca mulatta and Macaca fascicularis). Growth Regul 5(4):190–198PubMedPubMedCentralGoogle Scholar
  94. Tarantal AF, Hunter MK, Gargosky SE (1997) Direct administration of insulin-like growth factor to fetal rhesus monkeys (Macaca mulatta). Endocrinology 138(8):3349–3358PubMedCrossRefPubMedCentralGoogle Scholar
  95. Tarantini S, Giles CB, Wren JD, Ashpole NM, Valcarcel-Ares MN, Wei JY et al (2016) IGF-1 deficiency in a critical period early in life influences the vascular aging phenotype in mice by altering miRNA-mediated post-transcriptional gene regulation: implications for the developmental origins of health and disease hypothesis. Age (Dordrecht, Netherlands) 38(4):239–258CrossRefGoogle Scholar
  96. Tosh DN, Fu Q, Callaway CW, McKnight RA, McMillen IC, Ross MG et al (2010) Epigenetics of programmed obesity: alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs. delayed postnatal catch-up growth. Am J Physiol Gastrointest Liver Physiol 299(5):G1023–G1029PubMedPubMedCentralCrossRefGoogle Scholar
  97. Tuersunjiang N, Odhiambo JF, Shasa DR, Smith AM, Nathanielsz PW, Ford SP (2017) Maternal obesity programs reduced leptin signaling in the pituitary and altered GH/IGF1 axis function leading to increased adiposity in adult sheep offspring. PLoS ONE 12(8):e0181795PubMedPubMedCentralCrossRefGoogle Scholar
  98. van Abeelen AF, Veenendaal MV, Painter RC, de Rooij SR, Dijkgraaf MG, Bossuyt PM et al (2012) Survival effects of prenatal famine exposure. Am J Clin Nutr 95(1):179–183PubMedCrossRefPubMedCentralGoogle Scholar
  99. van Noord PA (2004) Breast cancer and the brain: a neurodevelopmental hypothesis to explain the opposing effects of caloric deprivation during the Dutch famine of 1944–1945 on breast cancer and its risk factors. J Nutr 134(12 Suppl):3399S–3406SPubMedCrossRefPubMedCentralGoogle Scholar
  100. Vangeel EB, Izzi B, Hompes T, Vansteelandt K, Lambrechts D, Freson K et al (2015) DNA methylation in imprinted genes IGF2 and GNASXL is associated with prenatal maternal stress. Genes Brain Behav 14(8):573–582PubMedCrossRefGoogle Scholar
  101. Vickers MH, Sloboda DM (2012a) Strategies for reversing the effects of metabolic disorders induced as a consequence of developmental programming. Front Physiol 3:242PubMedPubMedCentralCrossRefGoogle Scholar
  102. Vickers MH, Sloboda DM (2012b) Leptin as mediator of the effects of developmental programming. Best Pract Res Clin Endocrinol Metab 26(5):677–687PubMedCrossRefGoogle Scholar
  103. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD (2000) Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab 279(1):E83–E87PubMedCrossRefGoogle Scholar
  104. Vickers MH, Reddy S, Ikenasio BA, Breier BH (2001a) Dysregulation of the adipoinsular axis—a mechanism for the pathogenesis of hyperleptinemia and adipogenic diabetes induced by fetal programming. J Endocrinol 170(2):323–332PubMedCrossRefGoogle Scholar
  105. Vickers MH, Ikenasio BA, Breier BH (2001b) IGF-I treatment reduces hyperphagia, obesity, and hypertension in metabolic disorders induced by fetal programming. Endocrinology 142(9):3964–3973PubMedCrossRefGoogle Scholar
  106. Vickers MH, Ikenasio BA, Breier BH (2002) Adult growth hormone treatment reduces hypertension and obesity induced by an adverse prenatal environment. J Endocrinol 175(3):615–623PubMedCrossRefGoogle Scholar
  107. Vickers MH, Breier BH, McCarthy D, Gluckman PD (2003) Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. Am J Physiol Regul Integr Comp Physiol 285(1):R271–R273PubMedCrossRefGoogle Scholar
  108. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A et al (2005) Neonatal leptin treatment reverses developmental programming. Endocrinology 146(10):4211–4216PubMedCrossRefGoogle Scholar
  109. Vickers MH, Hofman PL, Gluckman PD, Lobie PE, Cutfield WS (2006) Combination therapy with acipimox enhances the effect of growth hormone treatment on linear body growth in the normal and small-for-gestational-age rat. Am J Physiol Endocrinol Metab 291(6):E1212–E1219PubMedCrossRefGoogle Scholar
  110. Wali JA, de Boo HA, Derraik JG, Phua HH, Oliver MH, Bloomfield FH et al (2012) Weekly intra-amniotic IGF-1 treatment increases growth of growth-restricted ovine fetuses and up-regulates placental amino acid transporters. PLoS ONE 7(5):e37899PubMedPubMedCentralCrossRefGoogle Scholar
  111. Wallace JM, Milne JS, Aitken RP (2004) Maternal growth hormone treatment from day 35 to 80 of gestation alters nutrient partitioning in favor of uteroplacental growth in the overnourished adolescent sheep. Biol Reprod 70(5):1277–1285PubMedCrossRefPubMedCentralGoogle Scholar
  112. Wallace JM, Matsuzaki M, Milne J, Aitken R (2006) Late but not early gestational maternal growth hormone treatment increases fetal adiposity in overnourished adolescent sheep. Biol Reprod 75(2):231–239PubMedCrossRefPubMedCentralGoogle Scholar
  113. Wang Y, Jiang H (2005) Identification of a distal STAT5-binding DNA region that may mediate growth hormone regulation of insulin-like growth factor-I gene expression. J Biol Chem 280(12):10955–10963PubMedCrossRefPubMedCentralGoogle Scholar
  114. Woodall SM, Breier BH, Johnston BM, Gluckman PD (1996) A model of intrauterine growth retardation caused by chronic maternal undernutrition in the rat: effects on the somatotrophic axis and postnatal growth. J Endocrinol 150(2):231–242PubMedCrossRefPubMedCentralGoogle Scholar
  115. Woodall SM, Breier BH, Johnston BM, Bassett NS, Barnard R, Gluckman PD (1999) Administration of growth hormone or IGF-I to pregnant rats on a reduced diet throughout pregnancy does not prevent fetal intrauterine growth retardation and elevated blood pressure in adult offspring. J Endocrinol 163(1):69–77PubMedCrossRefPubMedCentralGoogle Scholar
  116. Zinkhan EK, Fu Q, Wang Y, Yu X, Callaway CW, Segar JL et al (2012) Maternal hyperglycemia disrupts histone 3 lysine 36 Trimethylation of the IGF-1 gene. J Nutr Metab 2012:930364PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Liggins Institute, University of AucklandAucklandNew Zealand

Personalised recommendations