Skip to main content

On Distributed Merlin-Arthur Decision Protocols

  • Conference paper
  • First Online:
Book cover Structural Information and Communication Complexity (SIROCCO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11639))

Abstract

In a distributed locally-checkable proof, we are interested in checking the legality of a given network configuration with respect to some Boolean predicate. To do so, the network enlists the help of a prover—a computationally-unbounded oracle that aims at convincing the network that its state is legal, by providing the nodes with certificates that form a distributed proof of legality. The nodes then verify the proof by examining their certificate, their local neighborhood and the certificates of their neighbors.

In this paper we examine the power of a randomized form of locally-checkable proof, called distributed Merlin-Arthur protocols, or \({\textsf {dMA}}\) for short. In a \({\textsf {dMA}}\) protocol, the prover assigns each node a short certificate, and the nodes then exchange random messages with their neighbors. We show that while there exist problems for which \({\textsf {dMA}}\) protocols are more efficient than protocols that do not use randomness, for several natural problems, including Leader Election, Diameter, Symmetry, and Counting Distinct Elements, \({\textsf {dMA}}\) protocols are no more efficient than standard nondeterministic protocols. This is in contrast with Arthur-Merlin (\({\textsf {dAM}}\)) protocols and Randomized Proof Labeling Schemes (RPLS), which are known to provide improvements in certificate size, at least for some of the aforementioned properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, P.K., Cormode, G., Huang, Z., Phillips, J.M., Wei, Z., Yi, K.: Mergeable summaries. ACM Trans. Database Syst. 38(4), 26:1–26:28 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baruch, M., Fraigniaud, P., Patt-Shamir, B.: Randomized proof-labeling schemes. In: 34th ACM Symposium on Principles of Distributed Computing (PODC), pp. 315–324 (2015)

    Google Scholar 

  4. Censor-Hillel, K., Khoury, S., Paz, A.: Quadratic and near-quadratic lower bounds for the CONGEST model (2017). arXiv preprint arXiv:1705.05646

  5. Censor-Hillel, K., Paz, A., Perry, M.: Approximate proof-labeling schemes. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 71–89. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72050-0_5

    Chapter  Google Scholar 

  6. Cook, S.A.: The Complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing (STOC 1971), New York, NY, USA, pp. 151–158. ACM (1971)

    Google Scholar 

  7. Erdős, P., Rényi, A.: Asymmetric graphs. Acta Math. Hungar. 14(3–4), 295–315 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local distributed computing. J. ACM 60(5), 35:1–35:26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base applications. J. Comput. Syst. Sci. 31(2), 182–209 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM (JACM) 38(3), 690–728 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Göös, M., Suomela, J.: Locally checkable proofs in distributed computing. Theory Comput. 12(1), 1–33 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Kushilevitz, E., Nisan, N.: Communication Complexity, pp. 1–189. Cambridge University Press, New York (1997). ISBN 978-0-521-56067-2

    MATH  Google Scholar 

  14. Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: 37th ACM Symposium on Principles of Distributed Computing (PODC), pp. 255–264 (2018)

    Google Scholar 

  15. Kol, G., Oshman, R., Saxena, R.R.: AM Lower Bound for Symmetry. Private communication (2019)

    Google Scholar 

  16. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4), 215–233 (2010). https://doi.org/10.1007/s00446-010-0095-3

    Article  MATH  Google Scholar 

  17. Kushilevitz, E., Nissan, N.: Communication Complexity. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  18. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive proof systems. J. ACM 39(4), 859–868 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive proofs (2018). CoRR abs/1812.10917

    Google Scholar 

  20. Naor, M., Stockmeyer, L.J.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Patt-Shamir, B.: A note on efficient aggregate queries in sensor networks. Theor. Comput. Sci. 370(1–3), 254–264 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Partially supported by CONICYT PIA/Apoyo a Centros Científicos y Tecnológicos de Excelencia AFB 170001 (P.M. and I.R.), Fondecyt 1170021 (I.R.) and CONICYT via PAI + Convocatoria Nacional Subvención a la Incorporación en la Academia Año 2017 + PAI77170068 (P.M.). Rotem Oshman is supported by ISF i-core Center for Excellence, No. 4/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Montealegre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fraigniaud, P., Montealegre, P., Oshman, R., Rapaport, I., Todinca, I. (2019). On Distributed Merlin-Arthur Decision Protocols. In: Censor-Hillel, K., Flammini, M. (eds) Structural Information and Communication Complexity. SIROCCO 2019. Lecture Notes in Computer Science(), vol 11639. Springer, Cham. https://doi.org/10.1007/978-3-030-24922-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24922-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24921-2

  • Online ISBN: 978-3-030-24922-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics