Distributed Pattern Formation in a Ring

  • Anne-Laure Ehresmann
  • Manuel Lafond
  • Lata Narayanan
  • Jaroslav OpatrnyEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11639)


Motivated by concerns about diversity in social networks, we consider the following pattern formation problems in rings. Assume n mobile agents are located at the nodes of an n-node ring network. Each agent is assigned a colour from the set \(\{c_1, c_2, \ldots , c_q \}\). The ring is divided into k contiguous blocks or neighbourhoods of length p. The agents are required to rearrange themselves in a distributed manner to satisfy given diversity requirements: in each block j and for each colour \(c_i\), there must be exactly \(n_i(j) >0\) agents of colour \(c_i\) in block j. Agents are assumed to be able to see agents in adjacent blocks, and move to any position in adjacent blocks in one time step.

When the number of colours \(q=2\), we give an algorithm that terminates in time \(N_1/n^*_1 + k + 4\) where \(N_1\) is the total number of agents of colour \(c_1\) and \(n^*_1\) is the minimum number of agents of colour \(c_1\) required in any block. When the diversity requirements are the same in every block, our algorithm requires \(3k+4\) steps, and is asymptotically optimal. Our algorithm generalizes for an arbitrary number of colours, and terminates in O(nk) steps. We also show how to extend it to achieve arbitrary specific final patterns, provided there is at least one agent of every colour in every pattern.


  1. 1.
    Benard, S., Willer, R.: A wealth and status-based model of residential segregation. Math. Sociol. 31(2), 149–174 (2007)CrossRefGoogle Scholar
  2. 2.
    Benenson, I., Hatna, E., Or, E.: From Schelling to spatially explicit modeling of urban ethnic and economic residential dynamics. Sociol. Methods Res. 37(4), 463–497 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bose, K., Adhikary, R., Kundu, M.K., Sau, B.: Arbitrary pattern formation on infinite grid by asynchronous oblivious robots. In: Das, G.K., Mandal, P.S., Mukhopadhyaya, K., Nakano, S. (eds.) WALCOM 2019. LNCS, vol. 11355, pp. 354–366. Springer, Cham (2019). Scholar
  4. 4.
    Brandt, C., Immorlica, N., Kamath, G., Kleinberg, R.: An analysis of one-dimensional Schelling segregation. In: Proceedings of the 44th STOC, pp. 789–804. ACM (2012)Google Scholar
  5. 5.
    Bredereck, R., Elkind, E., Igarashi, A.: Hedonic diversity games (2019). arXiv preprint arXiv:1903.00303
  6. 6.
    Chauhan, A., Lenzner, P., Molitor, L.: Schelling segregation with strategic agents. In: Deng, X. (ed.) SAGT 2018. LNCS, vol. 11059, pp. 137–149. Springer, Cham (2018). Scholar
  7. 7.
    Cicerone, S., Di Stefano, G., Navarra, A.: Asynchronous embedded pattern formation without orientation. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 85–98. Springer, Heidelberg (2016). Scholar
  8. 8.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34, 1516–1528 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems. Theor. Comput. Sci. 399, 71–82 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dall’Asta, L., Castellano, C., Marsili, M.: Statistical physics of the Schelling model of segregation. J. Stat. Mech.: Theory Exp. 2008(07), L07002 (2008)CrossRefGoogle Scholar
  11. 11.
    D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on anonymous grids without multiplicity detection. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 327–338. Springer, Heidelberg (2012). Scholar
  12. 12.
    Eagle, N., Macy, M., Claxton, R.: Network diversity and economic development. Science 328(5981), 1029–1031 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ehresmann, A.L., Lafond, M., Narayanan. L., Opatrny, J.: Distributed pattern formation in a ring (2019). arXiv:1905.08856
  14. 14.
    Elkind, E., Gan, J., Igarashi, A., Suksompong, W., Voudouris, A.A.: Schelling games on graphs (2019). arXiv preprint arXiv:1902.07937
  15. 15.
    Elor, Y., Bruckstein, A.M.: Uniform multi-agent deployment on a ring. Theor. Comput. Sci. 412(8–10), 783–795 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots: Synthesis Lectures on Distributed Computing Theory. Morgan and Claypool Publishers, San Rafael (2012)CrossRefGoogle Scholar
  17. 17.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Mobile Entities: Current Research in Moving and Computing. LNCS, vol. 11340. Springer, Cham (2019). Scholar
  18. 18.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous mobile robots with limited visibility. Theor. Comput. Sci. 337(1–2), 147–168 (2005)CrossRefGoogle Scholar
  19. 19.
    Henry, A.D., Pralat, P., Zhang, C.-Q.: Emergence of segregation in evolving social networks. Proc. Nat. Acad. Sci. 108(21), 8605–8610 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Immorlica, N., Kleinberg, R., Lucier, B., Zadomighaddam, M.: Exponential segregation in a two-dimensional Schelling model with tolerant individuals. In: Proceedings of the 20th SODA Symposium, pp. 984–993 (2017)Google Scholar
  21. 21.
    Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theor. Comput. Sci. 390(1), 27–39 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Krizanc, D., Lafond, M., Narayanan, L., Opatrny, J., Shende, S.: Satisfying neighbor preferences on a circle. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018. LNCS, vol. 10807, pp. 727–740. Springer, Cham (2018). Scholar
  23. 23.
    Lamani, A., Potop-Butucaru, M.G., Tixeuil, S.: Optimal deterministic ring exploration with oblivious asynchronous robots. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 183–196. Springer, Heidelberg (2010). Scholar
  24. 24.
    Mendes de Leon, C.F., Ali, T., Nilsson, C., Weuve, J., Rajan, K.B.: Longitudinal effects of social network diversity on mortality and disability among elderly. Innovation Aging 1(suppl 1), 431 (2017)Google Scholar
  25. 25.
    Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed stable network construction. Distrib. Comput. 29(3), 207–237 (2016). Scholar
  26. 26.
    Pancs, R., Vriend, N.J.: Schelling’s spatial proximity model of segregation revisited. J. Public Econ. 91(1), 1–24 (2007)CrossRefGoogle Scholar
  27. 27.
    Reagans, R., Zuckerman, E.W.: Networks, diversity, and productivity: the social capital of corporate R&D teams. Organ. Sci. 12(4), 502–517 (2001)CrossRefGoogle Scholar
  28. 28.
    Schelling, T.C.: Models of segregation. Am. Econ. Rev. 59(2), 488–493 (1969)Google Scholar
  29. 29.
    Schelling, T.C.: Dynamic models of segregation. J. Math. Sociol. 1(2), 143–186 (1971)CrossRefGoogle Scholar
  30. 30.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Young, H.P.: Individual Strategy and Social Structure: An Evolutionary Theory of Institutions. Princeton University Press, Princeton (2001)Google Scholar
  32. 32.
    Zhang, J.: A dynamic model of residential segregation. J. Math. Sociol. 28(3), 147–170 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anne-Laure Ehresmann
    • 1
  • Manuel Lafond
    • 2
  • Lata Narayanan
    • 1
  • Jaroslav Opatrny
    • 1
    Email author
  1. 1.Department of Computer Science and Software EngineeringConcordia UniversityMontrealCanada
  2. 2.Department of Computer ScienceUniversity of SherbrookeSherbrookeCanada

Personalised recommendations