Skip to main content

Time-Energy Tradeoffs for Evacuation by Two Robots in the Wireless Model

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2019)

Abstract

Two robots stand at the origin of the infinite line and are tasked with searching collaboratively for an exit at an unknown location on the line. They can travel at maximum speed b and can change speed or direction at any time. The two robots can communicate with each other at any distance and at any time. The task is completed when the last robot arrives at the exit and evacuates. We study time-energy tradeoffs for the above evacuation problem. The evacuation time is the time it takes the last robot to reach the exit. The energy it takes for a robot to travel a distance x at speed s is measured as \(xs^2\). The total and makespan evacuation energies are respectively the sum and maximum of the energy consumption of the two robots while executing the evacuation algorithm.

Assuming that the maximum speed is b, and the evacuation time is at most cd, where d is the distance of the exit from the origin, we study the problem of minimizing the total energy consumption of the robots. We prove that the problem is solvable only for \(bc \ge 3\). For the case \(bc=3\), we give an optimal algorithm, and give upper bounds on the energy for the case \(bc>3\).

We also consider the problem of minimizing the evacuation time when the available energy is bounded by \(\varDelta \). Surprisingly, when \(\varDelta \) is a constant, independent of the distance d of the exit from the origin, we prove that evacuation is possible in time \(O(d^{3/2}\log d)\), and this is optimal up to a logarithmic factor. When \(\varDelta \) is linear in d, we give upper bounds on the evacuation time.

A full version of this work is available on the Computing Research Repository [12].

J. Czyzowicz, K. Georgiou, E. Kranakis, M. Lafond, L. Narayanan and J. Opatrny—Research supported in part by NSERC Discovery grant.

R. Killick—Research supported by the Ontario Graduate Scholarship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The constant of proportionality has (SI) units kg / m and depends, among other things, on the shape of the object and the density of the fluid through which it moves.

References

  1. Ahlswede, R., Wegener, I.: Search Problems. Wiley-Interscience, Chichester (1987)

    MATH  Google Scholar 

  2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Springer, Boston (2003). https://doi.org/10.1007/b100809

    Book  MATH  Google Scholar 

  3. Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)

    Article  MathSciNet  Google Scholar 

  4. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  5. Beck, A.: On the linear search problem. Isr. J. Math. 2(4), 221–228 (1964)

    Article  MathSciNet  Google Scholar 

  6. Bellman, R.: An optimal search. SIAM Rev. 5(3), 274 (1963)

    Article  Google Scholar 

  7. Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration without communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_10

    Chapter  Google Scholar 

  8. Chrobak, M., Gąsieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46078-8_14

    Chapter  Google Scholar 

  9. Chuangpishit, H., Georgiou, K., Sharma, P.: Average case - worst case tradeoffs for evacuating 2 robots from the disk in the face-to-face model. In: Gilbert, S., Hughes, D., Krishnamachari, B. (eds.) ALGOSENSORS 2018. LNCS, vol. 11410, pp. 62–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14094-6_5

    Chapter  Google Scholar 

  10. Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_9

    Chapter  Google Scholar 

  11. Czyzowicz, J., et al.: Energy/time trade-offs for linear-search. In: The 46th International Colloquium on Automata, Languages and Programming (ICALP 2019) (2019, to appear)

    Google Scholar 

  12. Czyzowicz, J.: Time-energy tradeoffs for evacuation by two robots in the wireless model. CoRR, abs/1905.06783 (2019)

    Google Scholar 

  13. Czyzowicz, J., et al.: God save the queen. In: 9th International Conference on Fun with Algorithms (FUN 2018). LIPIcs, vol. 100, pp. 16:1–16:20 (2018)

    Google Scholar 

  14. Czyzowicz, J., et al.: Priority evacuation from a disk using mobile robots. In: Lotker, Z., Patt-Shamir, B. (eds.) SIROCCO 2018. LNCS, vol. 11085, pp. 392–407. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01325-7_32

    Chapter  Google Scholar 

  15. Czyzowicz, J., Georgiou, K., Kranakis, E.: Group search and evacuation. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities: Current Research in Moving and Computing, Chap. 14. LNCS, vol. 11340, pp. 335–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_14

    Chapter  Google Scholar 

  16. Czyzowicz, J., et al.: Search on a line by byzantine robots. In: Proceedings of 27th ISAAC, pp. 27:1–27:12 (2016)

    Google Scholar 

  17. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (extended abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 140–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18173-8_10

    Chapter  Google Scholar 

  18. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with faulty robots. In: Proceeding of PODC, pp. 405–413. ACM (2016)

    Google Scholar 

  19. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Linear search with terrain-dependent speeds. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 430–441. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_36

    Chapter  Google Scholar 

  20. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6_13

    Chapter  Google Scholar 

  21. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Comput. Sci. 361(2), 342–355 (2006)

    Article  MathSciNet  Google Scholar 

  22. Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with one robot on a disk - (track: wireless and geometry). In: Proceedings of 12th ALGOSENSORS 2016, pp. 80–94 (2016)

    Google Scholar 

  23. Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with 2 robots on a disk - wireless and face-to-face communication models. In: Liberatore, F., Parlier, G.H., Demange, M. (eds.) Proceedings of the 6th International Conference on Operations Research and Enterprise Systems, ICORES 2017, Porto, Portugal, 23–25 February 2017, pp. 15–26. SciTePress (2017)

    Google Scholar 

  24. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996)

    Article  MathSciNet  Google Scholar 

  25. Stone, L.: Theory of Optimal Search. Academic Press, New York (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Kranakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Czyzowicz, J. et al. (2019). Time-Energy Tradeoffs for Evacuation by Two Robots in the Wireless Model. In: Censor-Hillel, K., Flammini, M. (eds) Structural Information and Communication Complexity. SIROCCO 2019. Lecture Notes in Computer Science(), vol 11639. Springer, Cham. https://doi.org/10.1007/978-3-030-24922-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24922-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24921-2

  • Online ISBN: 978-3-030-24922-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics