Skip to main content

Collaborative Delivery on a Fixed Path with Homogeneous Energy-Constrained Agents

  • Conference paper
  • First Online:
  • 339 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11639))

Abstract

We consider the problem of collectively delivering a package from a specified source to a designated target location in a graph, using multiple mobile agents. Each agent starts from a distinct vertex of the graph, and can move along the edges of the graph carrying the package. However, each agent has limited energy budget allowing it to traverse a path of bounded length B; thus, multiple agents need to collaborate to move the package to its destination. Given the positions of the agents in the graph and their energy budgets, the problem of finding a feasible movement schedule is called the Collaborative Delivery problem and has been studied before.

One of the open questions from previous results is what happens when the delivery must follow a fixed path given in advance. Although this special constraint reduces the search space for feasible solutions, the problem of finding a feasible schedule remains NP hard (as the original problem). We consider the optimization version of the problem that asks for the optimal energy budget B per agent which allows for a feasible delivery schedule, given the initial positions of the agents. We show the existence of better approximations for the fixed-path version of the problem (at least for the restricted case of single pickup per agent), compared to the known results for the general version of the problem, thus answering the open question from the previous paper.

We provide polynomial time approximation algorithms for both directed and undirected graphs, and establish hardness of approximation for the directed case. Note that the fixed path version of collaborative delivery requires completely different techniques since a single agent may be used multiple times, unlike the general version of collaborative delivery studied before. We show that restricting each agent to a single pickup allows better approximations for fixed path collaborative delivery compared to the original problem. Finally, we provide a polynomial time algorithm for determining a feasible delivery strategy, if any exists, for a given budget B when the number of available agents is bounded by a constant.

This work was partially supported by the ANR project ANCOR (anr-14-CE36-0002-01).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxès, Y.: Convergecast and broadcast by power-aware mobile agents. Algorithmica 74(1), 117–155 (2016)

    Article  MathSciNet  Google Scholar 

  2. Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by a mobile robot. Inf. Comput. 152(2), 155–172 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bampas, E., Chalopin, J., Das, S., Hackfeld, J., Karousatou, C.: Maximal exploration of trees with energy-constrained agents. CoRR, abs/1802.06636 (2018)

    Google Scholar 

  4. Bampas, E., Das, S., Dereniowski, D., Karousatou, C.: Collaborative delivery by energy-sharing low-power mobile robots. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 1–12. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72751-6_1

    Chapter  Google Scholar 

  5. Bärtschi, A., et al.: Collaborative delivery with energy-constrained mobile robots. Theor. Comput. Sci. (2017)

    Google Scholar 

  6. Bärtschi, A., et al.: Energy-efficient delivery by heterogeneous mobile agents. In: 34th Symposium on Theoretical Aspects of Computer Science (STACS), pp. 10:1–10:14 (2017)

    Google Scholar 

  7. Bärtschi, A., Graf, D., Mihalák, M.: Collective fast delivery by energy-efficient agents. In: 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), vol. 117, pp. 56:1–56:16 (2018)

    Google Scholar 

  8. Bärtschi, A., Graf, D., Penna, P.: Truthful mechanisms for delivery with agents. In: 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017). OpenAccess Series in Informatics (OASIcs), vol. 59, pp. 2:1–2:17 (2017)

    Google Scholar 

  9. Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown environment. Mach. Learn. 18(2), 231–254 (1995)

    Google Scholar 

  10. Bilò, D., Disser, Y., Gualà, L., Mihalák, M., Proietti, G., Widmayer, P.: Polygon-constrained motion planning problems. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 67–82. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45346-5_6

    Chapter  Google Scholar 

  11. Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery by energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 111–122. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45346-5_9

    Chapter  Google Scholar 

  12. Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-constrained mobile agents on a line. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 423–434. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7_36

    Chapter  Google Scholar 

  13. Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Communication problems for mobile agents exchanging energy. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 275–288. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48314-6_18

    Chapter  MATH  Google Scholar 

  14. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration by energy-constrained mobile robots. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 357–369. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25258-2_25

    Chapter  Google Scholar 

  15. Das, S., Dereniowski, D., Uznanski, P.: Energy constrained depth first search. CoRR, abs/1709.10146 (2017)

    Google Scholar 

  16. Demaine, E.D., Hajiaghayi, M., Mahini, H., Sayedi-Roshkhar, A.S., Oveisgharan, S., Zadimoghaddam, M.: Minimizing movement. ACM Trans. Algorithms 5(3), 1–30 (2009)

    Article  MathSciNet  Google Scholar 

  17. Dereniowski, D., Disser, Y., Kosowski, A., Pająk, D., Uznański, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)

    Article  MathSciNet  Google Scholar 

  18. Duncan, C.A., Kobourov, S.G., Anil Kumar, V.S.: Optimal constrained graph exploration. In: 12th ACM Symposium on Discrete Algorithms, SODA 2001, pp. 807–814 (2001)

    Google Scholar 

  19. Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 341–351. Springer, Heidelberg (2006). https://doi.org/10.1007/11682127_24

    Chapter  Google Scholar 

  20. Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72951-8_5

    Chapter  Google Scholar 

  21. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Morgan & Claypool, San Rafael (2012)

    Book  Google Scholar 

  22. Fraigniaud, P., Ga̧sieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)

    Google Scholar 

  23. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  24. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  25. Giannakos, A., Hifi, M., Karagiorgos, G.: Data delivery by mobile agents with energy constraints over a fixed path. CoRR, abs/1703.05496 (2017)

    Google Scholar 

  26. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl. Math. 8(1), 85–89 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Labourel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chalopin, J., Das, S., Disser, Y., Labourel, A., Mihalák, M. (2019). Collaborative Delivery on a Fixed Path with Homogeneous Energy-Constrained Agents. In: Censor-Hillel, K., Flammini, M. (eds) Structural Information and Communication Complexity. SIROCCO 2019. Lecture Notes in Computer Science(), vol 11639. Springer, Cham. https://doi.org/10.1007/978-3-030-24922-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24922-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24921-2

  • Online ISBN: 978-3-030-24922-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics