A Topological Perspective on Distributed Network Algorithms

  • Armando Castañeda
  • Pierre FraigniaudEmail author
  • Ami Paz
  • Sergio Rajsbaum
  • Matthieu Roy
  • Corentin Travers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11639)


More than two decades ago, combinatorial topology was shown to be useful for analyzing distributed fault-tolerant algorithms in shared memory systems and in message passing systems. In this work, we show that combinatorial topology can also be useful for analyzing distributed algorithms in networks of arbitrary structure. To illustrate this, we analyze consensus, set-agreement, and approximate agreement in networks, and derive lower bounds for these problems under classical computational settings, such as the LOCAL model and dynamic networks.


Distributed computing Distributed graph algorithms Combinatorial topology 



Pierre Fraigniaud and Corentin Travers are supported by ANR projects DESCARTES and FREDA; Pierre Fraigniaud receives additional support from INRIA project GANG; Ami Paz is supported by the Fondation Sciences Mathématiques de Paris (FSMP); Sergio Rajsbaum is supported by project unam-papiit IN109917.


  1. 1.
    Alistarh, D., Aspnes, J., Ellen, F., Gelashvili, R., Zhu, L.: Why extension-based proofs fail. CoRR abs/1811.01421 (2018). To appear in STOC 2019
  2. 2.
    Attiya, H., Castañeda, A., Herlihy, M., Paz, A.: Bounds on the step and namespace complexity of renaming. SIAM J. Comput. 48(1), 1–32 (2019). Scholar
  3. 3.
    Balliu, A., Brandt, S., Hirvonen, J., Olivetti, D., Rabie, M., Suomela, J.: Lower bounds for maximal matchings and maximal independent sets. CoRR abs/1901.02441 (2019)
  4. 4.
    Barenboim, L., Elkin, M., Goldenberg, U.: Locally-iterative distributed (\(\delta + 1\))-coloring below szegedy-vishwanathan barrier, and applications to self-stabilization and to restricted-bandwidth models. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, (PODC), pp. 437–446 (2018).
  5. 5.
    Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. In: 53rd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 321–330 (2012).
  6. 6.
    Bhadra, S., Ferreira, A.: Computing multicast trees in dynamic networks and the complexity of connected components in evolving graphs. J. Internet Services Appl. 3(3), 269–275 (2012). Scholar
  7. 7.
    Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrading consensus and k-set agreement in directed dynamic networks. Theor. Comput. Sci. 726, 41–77 (2018). Scholar
  8. 8.
    Brandt, S., et al.: A lower bound for the distributed Lovász local lemma. In: 48th ACM Symposium on Theory of Computing (STOC), pp. 479–488 (2016).
  9. 9.
    Castañeda, A., Rajsbaum, S.: New combinatorial topology bounds for renaming: the lower bound. Distrib. Comput. 22(5–6), 287–301 (2010). Scholar
  10. 10.
    Castañeda, A., Rajsbaum, S.: New combinatorial topology bounds for renaming: the upper bound. J. ACM 59(1), 3:1–3:49 (2012). Scholar
  11. 11.
    Casteigts, A., Flocchini, P., Godard, E., Santoro, N., Yamashita, M.: On the expressivity of time-varying graphs. Theor. Comput. Sci. 590, 27–37 (2015). Scholar
  12. 12.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012). Scholar
  13. 13.
    Chang, Y., Li, W., Pettie, S.: An optimal distributed\(({\varDelta }+1)\)-coloring algorithm? In: 50th ACM Symposium on Theory of Computing (STOC), pp. 445–456 (2018).
  14. 14.
    Charron-Bost, B., Függer, M., Nowak, T.: Approximate consensus in highly dynamic networks: the role of averaging algorithms. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 528–539. Springer, Heidelberg (2015). Scholar
  15. 15.
    Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed systems with benign faults. Distrib. Comput. 22(1), 49–71 (2009). Scholar
  16. 16.
    Chaudhuri, S., Herlihy, M., Lynch, N.A., Tuttle, M.R.: Tight bounds for k-set agreement. J. ACM 47(5), 912–943 (2000). Scholar
  17. 17.
    Coulouma, E., Godard, E., Peters, J.G.: A characterization of oblivious message adversaries for which consensus is solvable. Theor. Comput. Sci. 584, 80–90 (2015). Scholar
  18. 18.
    Fischer, M., Ghaffari, M., Kuhn, F.: Deterministic distributed edge-coloring via hypergraph maximal matching. In: 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp. 180–191 (2017).
  19. 19.
    Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985). Scholar
  20. 20.
    Ghaffari, M.: An improved distributed algorithm for maximal independent set. In: 27th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 270–277 (2016).
  21. 21.
    Ghaffari, M., Kuhn, F., Maus, Y.: On the complexity of local distributed graph problems. In: 49th ACM Symposium on Theory of Computing (STOC), pp. 784–797 (2017).
  22. 22.
    Godard, E., Perdereau, E.: k-set agreement in communication networks with omission faults. In: 20th International Conference on Principles of Distributed Systems (OPODIS), pp. 8:1–8:17 (2016).
  23. 23.
    Göös, M., Hirvonen, J., Suomela, J.: Linear-in-\(\varDelta \) lowerbounds in the LOCAL model. Distrib. Comput. 30(5), 325–338 (2017). Scholar
  24. 24.
    Harris, D.G., Schneider, J., Su, H.: Distributed \(({\Delta }+1)\)-coloring in sublogarithmic rounds. In: 48th ACM Symposium on Theory of Computing (STOC), pp. 465–478 (2016).
  25. 25.
    Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combinatorial Topology. Morgan Kaufmann, San Francisco (2013)zbMATHGoogle Scholar
  26. 26.
    Herlihy, M., Rajsbaum, S.: Set consensus using arbitrary objects. In: Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 324–333 (1994).
  27. 27.
    Herlihy, M., Rajsbaum, S.: Algebraic spans. Math. Struct. Comput. Sci. 10(4), 549–573 (2000). Scholar
  28. 28.
    Herlihy, M., Rajsbaum, S., Tuttle, M.R.: An axiomatic approach to computing the connectivity of synchronous and asynchronous systems. Electr. Notes Theor. Comput. Sci. 230, 79–102 (2009). Scholar
  29. 29.
    Herlihy, M., Shavit, N.: The asynchronous computability theorem for t-resilient tasks. In: 25th ACM Symposium on Theory of Computing (STOC), pp. 111–120 (1993).
  30. 30.
    Herlihy, M., Shavit, N.: The topological structure of asynchronous computability. J. ACM 46(6), 858–923 (1999). Scholar
  31. 31.
    Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic networks. In: 42nd ACM Symposium on Theory of Computing (STOC), pp. 513–522 (2010).
  32. 32.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: lower and upper bounds. J. ACM 63(2), 17:1–17:44 (2016). Scholar
  33. 33.
    Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks. In: 30th ACM Symposium on Principles of Distributed Computing (PODC), pp. 1–10 (2011).
  34. 34.
    Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT News 42(1), 82–96 (2011). Scholar
  35. 35.
    Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992). Scholar
  36. 36.
    Mendes, H., Tasson, C., Herlihy, M.: Distributed computability in Byzantine asynchronous systems. In: 46th Symposium on Theory of Computing (STOC), pp. 704–713 (2014).
  37. 37.
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia (2000)CrossRefGoogle Scholar
  38. 38.
    Rajsbaum, S., Castañeda, A., Flores-Peñaloza, D., Alcantara, M.: Fault-tolerant robot gathering problems on graphs with arbitrary appearing times. In: 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 493–502 (2017).
  39. 39.
    Rajsbaum, S., Raynal, M., Travers, C.: The iterated restricted immediate snapshot model. In: 14th International Conference on Computing and Combinatorics (COCOON), pp. 487–497 (2008).
  40. 40.
    Sakavalas, D., Tseng, L.: Network topology and fault-tolerant consensus. Synth. Lect. Distrib. Comput. Theory 9, 1–151 (2019)CrossRefGoogle Scholar
  41. 41.
    Saks, M.E., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of public knowledge. In: 25th ACM Symposium on Theory of Computing (STOC), pp. 101–110 (1993).
  42. 42.
    Suomela, J.: Survey of local algorithms. ACM Comput. Surv. 45(2), 24:1–24:40 (2013). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Armando Castañeda
    • 1
  • Pierre Fraigniaud
    • 2
    Email author
  • Ami Paz
    • 2
  • Sergio Rajsbaum
    • 1
  • Matthieu Roy
    • 3
  • Corentin Travers
    • 4
  1. 1.UNAMMexico CityMexico
  2. 2.CNRS and Université de ParisParisFrance
  3. 3.CNRSToulouseFrance
  4. 4.CNRS and University of BordeauxBordeauxFrance

Personalised recommendations