Skip to main content

A Topological Perspective on Distributed Network Algorithms

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2019)

Abstract

More than two decades ago, combinatorial topology was shown to be useful for analyzing distributed fault-tolerant algorithms in shared memory systems and in message passing systems. In this work, we show that combinatorial topology can also be useful for analyzing distributed algorithms in networks of arbitrary structure. To illustrate this, we analyze consensus, set-agreement, and approximate agreement in networks, and derive lower bounds for these problems under classical computational settings, such as the LOCAL model and dynamic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The CONGEST model has also been subject of tremendous progresses, but this model does not support full information protocols, and thus is out of the scope of our paper.

References

  1. Alistarh, D., Aspnes, J., Ellen, F., Gelashvili, R., Zhu, L.: Why extension-based proofs fail. CoRR abs/1811.01421 http://arxiv.org/abs/1811.01421 (2018). To appear in STOC 2019

  2. Attiya, H., Castañeda, A., Herlihy, M., Paz, A.: Bounds on the step and namespace complexity of renaming. SIAM J. Comput. 48(1), 1–32 (2019). https://doi.org/10.1137/16M1081439

    Article  MathSciNet  MATH  Google Scholar 

  3. Balliu, A., Brandt, S., Hirvonen, J., Olivetti, D., Rabie, M., Suomela, J.: Lower bounds for maximal matchings and maximal independent sets. CoRR abs/1901.02441 http://arxiv.org/abs/1901.02441 (2019)

  4. Barenboim, L., Elkin, M., Goldenberg, U.: Locally-iterative distributed (\(\delta + 1\))-coloring below szegedy-vishwanathan barrier, and applications to self-stabilization and to restricted-bandwidth models. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, (PODC), pp. 437–446 (2018). https://dl.acm.org/citation.cfm?id=3212769

  5. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. In: 53rd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 321–330 (2012). https://doi.org/10.1109/FOCS.2012.60

  6. Bhadra, S., Ferreira, A.: Computing multicast trees in dynamic networks and the complexity of connected components in evolving graphs. J. Internet Services Appl. 3(3), 269–275 (2012). https://doi.org/10.1007/s13174-012-0073-z

    Article  Google Scholar 

  7. Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrading consensus and k-set agreement in directed dynamic networks. Theor. Comput. Sci. 726, 41–77 (2018). https://doi.org/10.1016/j.tcs.2018.02.019

    Article  MathSciNet  MATH  Google Scholar 

  8. Brandt, S., et al.: A lower bound for the distributed Lovász local lemma. In: 48th ACM Symposium on Theory of Computing (STOC), pp. 479–488 (2016). https://doi.org/10.1145/2897518.2897570

  9. Castañeda, A., Rajsbaum, S.: New combinatorial topology bounds for renaming: the lower bound. Distrib. Comput. 22(5–6), 287–301 (2010). https://doi.org/10.1007/s00446-010-0108-2

    Article  MATH  Google Scholar 

  10. Castañeda, A., Rajsbaum, S.: New combinatorial topology bounds for renaming: the upper bound. J. ACM 59(1), 3:1–3:49 (2012). https://doi.org/10.1145/2108242.2108245

    Article  MathSciNet  MATH  Google Scholar 

  11. Casteigts, A., Flocchini, P., Godard, E., Santoro, N., Yamashita, M.: On the expressivity of time-varying graphs. Theor. Comput. Sci. 590, 27–37 (2015). https://doi.org/10.1016/j.tcs.2015.04.004

    Article  MathSciNet  MATH  Google Scholar 

  12. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012). https://doi.org/10.1080/17445760.2012.668546

    Article  Google Scholar 

  13. Chang, Y., Li, W., Pettie, S.: An optimal distributed\(({\varDelta }+1)\)-coloring algorithm? In: 50th ACM Symposium on Theory of Computing (STOC), pp. 445–456 (2018). https://doi.org/10.1145/3188745.3188964

  14. Charron-Bost, B., Függer, M., Nowak, T.: Approximate consensus in highly dynamic networks: the role of averaging algorithms. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 528–539. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_42

    Chapter  Google Scholar 

  15. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed systems with benign faults. Distrib. Comput. 22(1), 49–71 (2009). https://doi.org/10.1007/s00446-009-0084-6

    Article  MATH  Google Scholar 

  16. Chaudhuri, S., Herlihy, M., Lynch, N.A., Tuttle, M.R.: Tight bounds for k-set agreement. J. ACM 47(5), 912–943 (2000). https://doi.org/10.1145/355483.355489

    Article  MathSciNet  MATH  Google Scholar 

  17. Coulouma, E., Godard, E., Peters, J.G.: A characterization of oblivious message adversaries for which consensus is solvable. Theor. Comput. Sci. 584, 80–90 (2015). https://doi.org/10.1016/j.tcs.2015.01.024

    Article  MathSciNet  MATH  Google Scholar 

  18. Fischer, M., Ghaffari, M., Kuhn, F.: Deterministic distributed edge-coloring via hypergraph maximal matching. In: 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp. 180–191 (2017). https://doi.org/10.1109/FOCS.2017.25

  19. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985). https://doi.org/10.1145/3149.214121

    Article  MathSciNet  MATH  Google Scholar 

  20. Ghaffari, M.: An improved distributed algorithm for maximal independent set. In: 27th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 270–277 (2016). https://doi.org/10.1137/1.9781611974331.ch20

  21. Ghaffari, M., Kuhn, F., Maus, Y.: On the complexity of local distributed graph problems. In: 49th ACM Symposium on Theory of Computing (STOC), pp. 784–797 (2017). https://doi.org/10.1145/3055399.3055471

  22. Godard, E., Perdereau, E.: k-set agreement in communication networks with omission faults. In: 20th International Conference on Principles of Distributed Systems (OPODIS), pp. 8:1–8:17 (2016). https://doi.org/10.4230/LIPIcs.OPODIS.2016.8

  23. Göös, M., Hirvonen, J., Suomela, J.: Linear-in-\(\varDelta \) lowerbounds in the LOCAL model. Distrib. Comput. 30(5), 325–338 (2017). https://doi.org/10.1007/s00446-015-0245-8

    Article  MathSciNet  MATH  Google Scholar 

  24. Harris, D.G., Schneider, J., Su, H.: Distributed \(({\Delta }+1)\)-coloring in sublogarithmic rounds. In: 48th ACM Symposium on Theory of Computing (STOC), pp. 465–478 (2016). https://doi.org/10.1145/2897518.2897533

  25. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combinatorial Topology. Morgan Kaufmann, San Francisco (2013)

    MATH  Google Scholar 

  26. Herlihy, M., Rajsbaum, S.: Set consensus using arbitrary objects. In: Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 324–333 (1994). https://doi.org/10.1145/197917.198119

  27. Herlihy, M., Rajsbaum, S.: Algebraic spans. Math. Struct. Comput. Sci. 10(4), 549–573 (2000). http://journals.cambridge.org/action/displayAbstract?aid=54601

    Article  MathSciNet  Google Scholar 

  28. Herlihy, M., Rajsbaum, S., Tuttle, M.R.: An axiomatic approach to computing the connectivity of synchronous and asynchronous systems. Electr. Notes Theor. Comput. Sci. 230, 79–102 (2009). https://doi.org/10.1016/j.entcs.2009.02.018

    Article  MATH  Google Scholar 

  29. Herlihy, M., Shavit, N.: The asynchronous computability theorem for t-resilient tasks. In: 25th ACM Symposium on Theory of Computing (STOC), pp. 111–120 (1993). https://doi.org/10.1145/167088.167125

  30. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability. J. ACM 46(6), 858–923 (1999). https://doi.org/10.1145/331524.331529

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic networks. In: 42nd ACM Symposium on Theory of Computing (STOC), pp. 513–522 (2010). https://doi.org/10.1145/1806689.1806760

  32. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: lower and upper bounds. J. ACM 63(2), 17:1–17:44 (2016). https://doi.org/10.1145/2742012

    Article  MathSciNet  MATH  Google Scholar 

  33. Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks. In: 30th ACM Symposium on Principles of Distributed Computing (PODC), pp. 1–10 (2011). https://doi.org/10.1145/1993806.1993808

  34. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT News 42(1), 82–96 (2011). https://doi.org/10.1145/1959045.1959064

    Article  Google Scholar 

  35. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992). https://doi.org/10.1137/0221015

    Article  MathSciNet  MATH  Google Scholar 

  36. Mendes, H., Tasson, C., Herlihy, M.: Distributed computability in Byzantine asynchronous systems. In: 46th Symposium on Theory of Computing (STOC), pp. 704–713 (2014). https://doi.org/10.1145/2591796.2591853

  37. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  38. Rajsbaum, S., Castañeda, A., Flores-Peñaloza, D., Alcantara, M.: Fault-tolerant robot gathering problems on graphs with arbitrary appearing times. In: 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 493–502 (2017). https://doi.org/10.1109/IPDPS.2017.70

  39. Rajsbaum, S., Raynal, M., Travers, C.: The iterated restricted immediate snapshot model. In: 14th International Conference on Computing and Combinatorics (COCOON), pp. 487–497 (2008). https://doi.org/10.1007/978-3-540-69733-6_48

  40. Sakavalas, D., Tseng, L.: Network topology and fault-tolerant consensus. Synth. Lect. Distrib. Comput. Theory 9, 1–151 (2019)

    Article  Google Scholar 

  41. Saks, M.E., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of public knowledge. In: 25th ACM Symposium on Theory of Computing (STOC), pp. 101–110 (1993). https://doi.org/10.1145/167088.167122

  42. Suomela, J.: Survey of local algorithms. ACM Comput. Surv. 45(2), 24:1–24:40 (2013). https://doi.org/10.1145/2431211.2431223

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Pierre Fraigniaud and Corentin Travers are supported by ANR projects DESCARTES and FREDA; Pierre Fraigniaud receives additional support from INRIA project GANG; Ami Paz is supported by the Fondation Sciences Mathématiques de Paris (FSMP); Sergio Rajsbaum is supported by project unam-papiit IN109917.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Fraigniaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castañeda, A., Fraigniaud, P., Paz, A., Rajsbaum, S., Roy, M., Travers, C. (2019). A Topological Perspective on Distributed Network Algorithms. In: Censor-Hillel, K., Flammini, M. (eds) Structural Information and Communication Complexity. SIROCCO 2019. Lecture Notes in Computer Science(), vol 11639. Springer, Cham. https://doi.org/10.1007/978-3-030-24922-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24922-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24921-2

  • Online ISBN: 978-3-030-24922-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics