Advertisement

Approximate String Matching for DNS Anomaly Detection

  • Roni Mateless
  • Michael SegalEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11611)

Abstract

In this paper we propose a novel approach to identify anomalies in DNS traffic. The traffic time-points data is transformed to a string, which is used by new fast approximate string matching algorithm to detect anomalies. Our approach is generic in its nature and allows fast adaptation to different types of traffic. We evaluate the approach on a large public dataset of DNS traffic based on 10 days, discovering more than order of magnitude DNS attacks in comparison to auto-regression as a baseline. Moreover, the additional comparison has been made including other common regressors such as Linear Regression, Lasso, Random Forest and KNN, all of them showing the superiority of our approach.

Keywords

Anomaly detection Approximate string matching Similarity measures 

References

  1. 1.
    Security and Stability Advisory Committee (SSAC). SSAC advisory on fast flux hosting and DNS (2008)Google Scholar
  2. 2.
    Nazario, J., Holz, T.: As the net churns: fast-flux botnet observations. In: International Conference on in Malicious and Unwanted Software, pp. 24–31 (2008)Google Scholar
  3. 3.
    Villamarn-Salomn, R., Brustoloni, J.C.: Identifying botnets using anomaly detection techniques applied to DNS traffic. In: Consumer Communications and Networking Conference, pp. 476–481 (2008)Google Scholar
  4. 4.
    Choi, H., Lee, H., Lee, H., Kim, H.: Botnet detection by monitoring group activities in DNS traffic. In: IEEE International Conference on Computer and Information Technology, pp. 715–720 (2007)Google Scholar
  5. 5.
    Born, K., Gustafson, D.: Detecting DNS tunnels using character frequency analysis, CoRR, abs/1004.4358 (2010)Google Scholar
  6. 6.
    Karasaridis, A.: Detection of DNS Traffic Anomalies, AT&T report (2012)Google Scholar
  7. 7.
    Yuchi, X., Wang, X., Lee, X., Yan, B.: A new statistical approach to DNS traffic anomaly detection. In: Cao, L., Zhong, J., Feng, Y. (eds.) ADMA 2010. LNCS (LNAI), vol. 6441, pp. 302–313. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17313-4_30CrossRefGoogle Scholar
  8. 8.
    Čermák, M., Čeleda, P., Vykopal, J.: Detection of DNS traffic anomalies in large networks. In: Kermarrec, Y. (ed.) EUNICE 2014. LNCS, vol. 8846, pp. 215–226. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13488-8_20CrossRefGoogle Scholar
  9. 9.
    Yarochkin, F., Kropotov, V., Huang, Y., Ni, G.-K., Kuo, S.-Y., Chen, I.-Y.: Investigating DNS traffic anomalies for malicious activities. In: DSN Workshops, pp. 1–7 (2013)Google Scholar
  10. 10.
    Krmcek, V.: Inspecting DNS Flow Traffic for Purposes of Botnet Detection, manuscript (2011)Google Scholar
  11. 11.
    Satam, P., Alipour, H., Al-Nashif, Y., Hariri, S.: Anomaly behavior analysis of DNS protocol. J. Internet Serv. Inf. Secur. 5(4), 85–97 (2015)Google Scholar
  12. 12.
    Yamada, A., Miyake, Y., Terabe, M., Hashimoto, K., Kato, N.: Anomaly detection for DNS servers using frequent host selection. In: AINA, pp. 853–860 (2009)Google Scholar
  13. 13.
    Wang, Y., Hu, M.-z., Li, B., Yan, B.-r.: Tracking anomalous behaviors of name servers by mining DNS traffic. In: Min, G., Di Martino, B., Yang, Laurence T., Guo, M., Rünger, G. (eds.) ISPA 2006. LNCS, vol. 4331, pp. 351–357. Springer, Heidelberg (2006).  https://doi.org/10.1007/11942634_37CrossRefGoogle Scholar
  14. 14.
    Karasaridis, A., Meier-Hellstern, K., Hoeflin, D.: Nis04-2: detection of DNS anomalies using flow data analysis. In: GLOBECOM, pp. 1–6 (2006)Google Scholar
  15. 15.
    Gu, Y., McCallum, A., Towsley, D.: Detecting anomalies in network traffic using maximum entropy estimation. In: Proceedings of the 5th ACM SIGCOMM Conference on Internet Measurement (2005)Google Scholar
  16. 16.
    Berezinski, P., Jasiul, B., Szpyrka, M.: An entropy-based network anomaly detection method. Entropy 17, 2367–2408 (2015)CrossRefGoogle Scholar
  17. 17.
    AlEroud, A., Karabatis, G.: Queryable semantics to detect cyber-attacks:a flow-based detection approach. IEEE Trans. Syst. Man Cybern. Syst. 48, 207–223 (2017)CrossRefGoogle Scholar
  18. 18.
    Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distributions. SIGCOMM Comput. Commun. Rev. 35(4), 217–228 (2005)CrossRefGoogle Scholar
  19. 19.
    Raghuram, J., Miller, D.J., Kesidis, G.: Unsupervised, low latency anomaly detection of algorithmically generated domain names by generative probabilistic modeling. J. Adv. Res. 5, 423–433 (2014)CrossRefGoogle Scholar
  20. 20.
    Kirchler, M., Herrmann, D., Lindemann, J., Kloft, M.: Tracked without a trace: linking sessions of users by unsupervised learning of patterns in their DNS traffic. In: AISec@CCS, pp. 23–34 (2016)Google Scholar
  21. 21.
    Erman, J., Arlitt, M., Mahanti, A.: Traffic classification using clustering algorithms. In: MineNet 2006, pp. 281–286 (2006)Google Scholar
  22. 22.
    Chatzis, N., Popescu-Zeletin, R.: Flow level data mining of DNS query streams for email worm detection. In: Corchado, E., Zunino, R., Gastaldo, P., Herrero, Á. (eds.) Proceedings of the International Workshop on Computational Intelligence in Security for Information Systems CISIS 2008. Advances in Soft Computing, vol. 53, pp. 186–194. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-88181-0_24CrossRefGoogle Scholar
  23. 23.
    Moustafa, N., Slay, J.: Creating novel features to anomaly network detection using DARPA-2009 data set. In: Proceedings of the 14th European Conference on Cyber Warfare and Security 2015: ECCWS (2015)Google Scholar
  24. 24.
    Münz, G.: Traffic anomaly detection and cause identification using flow-level measurements. Technical University Munich 2010, pp. 1–228 (2010). ISBN 3-937201-12-2Google Scholar
  25. 25.
    Hong, L.V.: DNS Traffic Analysis for Network-based Malware Detection. Technical University of Denmark, Informatics and Mathematical Modelling (2012)Google Scholar
  26. 26.
    Nikolaev, I.: Network Service Anomaly Detection. Czech Technical University, Prague (2014)Google Scholar
  27. 27.
    Greis, R., Reis, T., Nguyen, C.: Comparing prediction methods in anomaly detection: an industrial evaluation. In: MILETS (2018)Google Scholar
  28. 28.
    Freedman, D.A.: Statistical Models: Theory and Practice. Cambridge University Press, Cambridge (2009)Google Scholar
  29. 29.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Ho, T.K.: Random decision forests. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition, pp. 278–282 (1995)Google Scholar
  31. 31.
    Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Statist. 46(3), 175–185 (1992)MathSciNetGoogle Scholar
  32. 32.
    Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323–350 (1977)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Hirani, M., Jones, S., Read, B.: Global DNS Hijacking Campaign: DNS Record Manipulation at Scale. https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html. Accessed 9 Jan 2019
  34. 34.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Software and Information Systems EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.School of Electrical and Computer Engineering, Department of Communication Systems EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations