An Anonymous Protocol for Member Privacy in a Consortium Blockchain

  • Gyeong-Jin Ra
  • Daehee Seo
  • Md Zakirul Alam Bhuiyan
  • Im-Yeong LeeEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11611)


A consortium blockchain is that multiple groups of authorized members that share one ledger. Transaction validation and membership authentication are executed by trusted nodes which create and store full block (a.k.a full node). Other lightweight nodes which stored only header block request validating transaction to full node. Therefore, because the lightweight node requesting of validation transaction and sharing ledger of members between groups in consortium blockchain creates a privacy problem. In this paper, we propose an anonymous protocol based on a credential system for privacy in a consortium blockchain. This solves the problem of computation overhead and privacy in the consortium blockchain.


Consortium blockchain Anonymous credential system Blind signature Multi-Bloom filter Anonymous identity 



This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2019-0-00403) supervised by the IITP (Institute for Information & communications Technology Planning & Evaluation).


  1. 1.
    Ra, G.J., Lee, I.Y.: A study on KSI-based authentication management and communication for secure smart home environments. KSII Trans. Internet Inf. Syst. 12(2), 892–904 (2018)Google Scholar
  2. 2.
    Pfitzmann, A., Köhntopp, M.: Anonymity, unobservability, and pseudonymity — a proposal for terminology. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS, vol. 2009, pp. 1–9. Springer, Heidelberg (2001). Scholar
  3. 3.
    Mercer, R.: Privacy on the blockchain: unique ring signatures. arXiv preprint arXiv:1612.01188 (2016)
  4. 4.
    Maksutov, A.A., Alexeev, M.S., Fedorova, N.O., Andreev, D.A.: Detection of blockchain transactions used in blockchain mixer of coin join type. In: IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 274–277. IEEE (2019)Google Scholar
  5. 5.
    Zhu, H., Tan, Y.A., Zhu, L., Wang, X., Zhang, Q., Li, Y.: An identity-based anti-quantum privacy-preserving blind authentication in wireless sensor networks. Sensors 18(5), 1663 (2018)CrossRefGoogle Scholar
  6. 6.
    Au, M.H., Chow, S.S.M., Susilo, W., Tsang, P.P.: Short linkable ring signatures revisited. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp. 101–115. Springer, Heidelberg (2006). Scholar
  7. 7.
    Paul, J., Xu, Q., Fei, S., Veeravalli, B., Aung, K.M.M.: Practically realisable anonymisation of bitcoin transactions with improved efficiency of the zerocoin protocol. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) FICC 2018. AISC, vol. 887, pp. 108–130. Springer, Cham (2019). Scholar
  8. 8.
    Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common reference strings with applications to zk-SNARKs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer, Cham (2018). Scholar
  9. 9.
    Feng, Q., He, D., Zeadally, S., Khan, M.K., Kumar, N.: A survey on privacy protection in blockchain system. J. Netw. Comput. Appl. (2018)Google Scholar
  10. 10.
    Morishima, S., Matsutani, H.: Accelerating blockchain search of full nodes using GPUs. In: 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 244–248. IEEE (2018)Google Scholar
  11. 11.
    Schukat, M., Cortijo, P.: Public key infrastructures and digital certificates for the Internet of Things. In: Signals and Systems Conference (ISSC), pp. 1–5 (2015)Google Scholar
  12. 12.
    Gu, K., Wu, N., Liu, Y., Yu, F., Yin, B.: WPKI certificate verification scheme based on certificate digest signature-online certificate status protocol. Math. Prob. Eng. (2018)Google Scholar
  13. 13.
    Zhu, X., Su, Y., Gao, M., Huang, Y.: Privacy-preserving friendship establishment based on blind signature and bloom filter in mobile social networks. In: IEEE/CIC International Conference on Communications in China (ICCC), pp. 1–6. IEEE (2015)Google Scholar
  14. 14.
    Haghighat, M.H., Tavakoli, M., Kharrazi, M.: Payload attribution via character dependent multi-bloom filters. IEEE Trans. Inf. Forensics Secur. 8(5), 705–716 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gyeong-Jin Ra
    • 1
  • Daehee Seo
    • 2
  • Md Zakirul Alam Bhuiyan
    • 3
  • Im-Yeong Lee
    • 1
    Email author
  1. 1.Department of Computer Science and EngineeringSoonchunhyang UniversityAsan-siRepublic of Korea
  2. 2.Department of Computer ScienceKennesaw State UniversityMariettaUSA
  3. 3.Department of Computer Science and Information SciencesFordham UniversityBronxUSA

Personalised recommendations