Skip to main content

Nanoparticles in Food Packaging: Opportunities and Challenges

  • Chapter
  • First Online:
Health and Safety Aspects of Food Processing Technologies

Abstract

Packaging is the last stage of food processing and a successful package is one that protects a product or contents from environment for a period of time with a reasonable cost. The package affects the quality of foods by controlling the degree of factors connected with processing, storage and handling that can act on components of food.

Use of nanotechnology in science brings great opportunities to many industries including food packaging industry. Recently, various engineered nanomaterials such as nanoclays and metallic nanoparticles have been introduced to food packaging as functional additives. Their positive effects on developed packaging materials have been extensively reported.

Nanoclays and metallic nanoparticles are also promising in active packaging technology, an innovative technology for food preservation based principally on mass transfer interactions between systems “food/packaging”. These nanoparticles have been applied to packaging system using different ways. This chapter aims to give an overview about the use of nanoparticles for food packaging and introduce the nanoclay and metallic nanoparticle types. Recent developments on active packaging produced by the use of nanoparticles are summarized. Migration studies and their safety issues are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu AS, Oliveira M, de Sá A, Rodrigues RM, Cerqueira MA, Vicente AA, Machado AV (2015). Antimicrobial nanostructured starch based films for packaging. Carbohyd Polym 129:127–134

    Google Scholar 

  • Ahmadi F (2012) Impact of different levels of silver nanoparticles (Ag-NPs) on performance, oxidative enzymes and blood parameters in broiler chicks. Pak Vet J 32:325–328

    CAS  Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1–63

    Article  Google Scholar 

  • Alipoormazandarani N, Ghazihoseini S, Nafchi AM (2015) Preparation and characterization of novel bionanocomposite based on soluble soybean polysaccharide and halloysite nanoclay. Carbohyd Polym 134:745–751

    Article  CAS  Google Scholar 

  • Alizadeh Sani M, Ehsani A, Hashemi M (2017) Whey protein isolate/cellulose nanofibre/TiO2 nanoparticle/rosemary essential oil nanocomposite film: its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration. Int J Food Microbiol 251:8–14

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Jain J, Rajwade JM, Paknikar KM (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236:310–318. https://doi.org/10.1016/j.taap.2009.02.020

    Article  CAS  PubMed  Google Scholar 

  • Artiaga G, Ramos K, Ramos L, Cámara C, Gómez-Gómez M (2015) Migration and characterisation of nanosilver from food containers by AF4-ICP-MS. Food Chem 166:76–85

    Article  CAS  PubMed  Google Scholar 

  • Ayhan Z, Cimmino S, Esturk O, Duraccio D, Pezzuto M, Silvestre C (2015) Development of films of novel polypropylene based nanomaterials for food packaging application. Packag Technol Sci 28:589–602

    Article  CAS  Google Scholar 

  • Azeez AA, Rhee KY, Park SJ, Hui D (2013) Epoxy clay nanocomposites–processing, properties and applications: a review. Compos Part B 45:308–320

    Article  CAS  Google Scholar 

  • Beigmohammad F, Peighambardoust SH, Hesari J, Azadmard-Damirchi S, Peighambardoust SJ, Khosrowshahi NK (2016) Antibacterial properties of LDPE nanocomposite films in packaging of UF cheese. LWT-Food Sci Technol 65:106–111

    Article  CAS  Google Scholar 

  • Bertrand N, Leroux JC (2012) The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release 161:152–163. https://doi.org/10.1016/j.jconrel.2011.09.098

    Article  CAS  PubMed  Google Scholar 

  • Borel T, Sabliov CM (2014) Nanodelivery of bioactive components for food applications: types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles. Annu Rev Food Sci Technol 5:197–213. https://doi.org/10.1146/annurev-food-030713-092354

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester H et al (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62. https://doi.org/10.1016/j.yrtph.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  • Braydich-Stolle LK et al (2010) Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol Sci 116:577–589. https://doi.org/10.1093/toxsci/kfq148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bumbudsanpharoke N, Ko S (2015) Nano-food packaging: an overview of market, migration research, and safety regulations. J Food Sci 80(5):R910–R923

    Article  CAS  PubMed  Google Scholar 

  • Busolo MA, Lagaron JM (2012) Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications. Innov Food Sci Emerg Tech 16:211–217

    Article  CAS  Google Scholar 

  • Carrillo-Inungaray ML, Trejo-Ramirez JA, Reyes-Munguia A, Carranza-Alvarez C (2018) Use of nanoparticles in the food industry: advances and perspectives. In: Impact of nanoscience in the food industry. Academic, New York, pp 419–444

    Google Scholar 

  • Chawengkijwanich C, Hayata Y (2008) Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123(3):288–292

    Article  CAS  PubMed  Google Scholar 

  • Chen C (2011) The manufacture of polymer nanocomposite materials using supercritical carbon dioxide. November 30, 2011. Blacksburg, VA, Doctor of philosophy in chemical engineering, Virginia Polytechnic Institute and State University

    Google Scholar 

  • Chen HB, Hu CY (2018) Influence of PP types on migration of zinc from nano-ZnO/PP composite films. Packag Technol Sci 31(11):747–753

    Article  CAS  Google Scholar 

  • Colín-Chávez C, Vicente-Ramírez EB, Soto-Valdez H, Peralta E, Auras R (2014) The release of carotenoids from a light-protected antioxidant active packaging designed to improve the stability of soybean oil. Food Bioprocess Tech 12:3504–3515

    Article  CAS  Google Scholar 

  • Cometa S, Iatta R, Ricci MA, Ferretti C, De Giglio E (2013) Analytical characterization and antimicrobial properties of novel copper nanoparticle-loaded electrosynthesized hydrogel coatings. J Bioact Compat Polym 28(5):508–522

    Article  CAS  Google Scholar 

  • Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2013) Migration and exposure assessment of silver from a PVC nanocomposite. Food Chem 139(1-4):389–397

    Google Scholar 

  • Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2014a) Evaluation and simulation of silver and copper nanoparticle migration from polyethylene nanocomposites to food and an associated exposure assessment. J Agr Food Chem 62:1403–1411

    Article  CAS  Google Scholar 

  • Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2014b) Silver migration from nanosilver and a commercially available zeolite filler polyethylene composites to food simulants. Food Addit Contam Part A 31(6):1132–1140

    Article  CAS  Google Scholar 

  • Davachi SM, Shekarabi AS (2018) Preparation and characterization of antibacterial, eco-friendly edible nanocomposite films containing Salvia macrosiphon and nanoclay. Int J Biol Macromol 113:66–72

    Article  CAS  PubMed  Google Scholar 

  • Donglu F, Wenjian Y, Kimatu BM, Mariga AM, Liyan Z, Xinxin A (2016) Effect of nanocomposite-based packaging on storage stability of mushrooms (Flammulina velutipes). Innov Food Sci Emerg Technol 33:489–497

    Article  CAS  Google Scholar 

  • Drew R, Hagen T (2016) Nanotechnologies in food packaging: an exploratory appraisal of safety and regulation. Prepared for Food Standards Australia New Zealand. Science Media Centre New Zealand, New Zealand

    Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interf Sci 363:1–24

    Article  CAS  Google Scholar 

  • EC (2011) COMMISSION Regulation (EU) No 10/2011 of 14 January 2011. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R0010&from=EN

  • Echegoyen Y, Nerín C (2013) Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol 62:16–22

    Article  CAS  PubMed  Google Scholar 

  • Echegoyen Y, Rodríguez S, Nerín C (2016) Nanoclay migration from food packaging materials. Food Addit Contam Part A 33(3):530–539

    Article  CAS  Google Scholar 

  • Espitia PJP, Soares NFF, Coimbra JSR, Andrade NJ, Renato SC, Medeiros EAA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Tech 5:1447–1464

    Article  CAS  Google Scholar 

  • Farhoodi M, Mousavi SM, Sotudeh-Gharebagh R, Emam-Djomeh Z, Oromiehie A (2014) Migration of aluminum and silicon from PET/clay nanocomposite bottles into acidic food simulant. Packag Technol Sci 27(2):161–168

    Article  CAS  Google Scholar 

  • Farhoodi M, Mohammadifar MA, Mousavi M, Sotudeh-Gharebagh R, Emam-Djome Z (2017) Migration kinetics of ethylene glycol monomer from Pet bottles into acidic food simulant: effects of nanoparticle presence and matrix morphology. J Food Process Eng 40:e12383

    Article  CAS  Google Scholar 

  • Fernández A, Picouet P, Lloret E (2010) Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. Int J Food Microbiol 142(1–2):222–228

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Park B, Siragusa G, Jones L, Tripp R, Zhao Y (2008) An Au/Si hetero-nanorod basedbiosensors for Salmonella detection. Nanotechnology 19:1–7

    CAS  Google Scholar 

  • Garcia CV, Shin GH, Kim JT (2018) Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends Food Sci Technol 82:21–31

    Google Scholar 

  • Gottesman R, Shukla S, Perkas N, Solovyov LA, Nitzan Y, Gedanken A (2011) Sonochemical coating of paper by microbiocidal silver nanoparticles. Langmuir 27(2):720–726

    Google Scholar 

  • Guo F, Aryana S, Han Y, Jiao Y (2018) A review of the synthesis and applications of polymer–nanoclay composites. Appl Sci 8(9):1696

    Article  CAS  Google Scholar 

  • Hackenberg S et al (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33. https://doi.org/10.1016/j.toxlet.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  • Han C, Zhao A, Varughese E, Sahle-Demessie E (2018) Evaluating weathering of food packaging polyethylene-nano-clay composites: release of nanoparticles and their impacts. NanoImpact 9:61–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedayati S, Niakousari M (2015) Effect of coatings of silver nanoparticles and gum arabic on physicochemical and microbial properties of green bell pepper (Capsicum annuum). J Food Process Preserv 39(6):2001–2007

    Article  CAS  Google Scholar 

  • Heringa MB et al (2018) Detection of titanium particles in human liver and spleen and possible health implications. Part Fibre Toxicol 15:15. https://doi.org/10.1186/s12989-018-0251-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoseinnejad M, Jafari SM, Katouzian I (2018) Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol 44(2):161–181

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Fang Y, Yang Y, Ma N, Zhao L (2011) Effect of nanocomposite-based packaging on postharvest quality of ethylene-treated kiwifruit (Actinidia deliciosa) during cold storage. Food Res Int 44(6):1589–1596

    Article  CAS  Google Scholar 

  • Huang C, Chen S, Wei W (2006) Processing and property improvement of polymeric composites with added ZnO nanoparticles through microinjection molding. J Appl Polym Sci 102:6009–6016

    Article  CAS  Google Scholar 

  • Huang CH, Chiu PH, Wang H, Meen TH, Yang CF (2007) Synthesis and characterization of gold nanodogbones by the seeded mediated growth method. Nanotechnology 18(39):395–603

    Article  CAS  Google Scholar 

  • Huang CL, Hsiao IL, Lin HC, Wang CF, Huang YJ, Chuang CY (2015a) Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environ Res 136:253–263. https://doi.org/10.1016/j.envres.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  • Huang JY, Chieng YY, Li X, Zhou W (2015b) Experimental and mathematical assessment of migration from multilayer food packaging containing a novel clay/polymer nanocomposite. Food Bioprocess Tech 8(2):382–393

    Article  CAS  Google Scholar 

  • Huang JY, Li X, Zhou W (2015c) Safety assessment of nanocomposite for food packaging application. Trends Food Sci Technol 45(2):187–199

    Article  CAS  Google Scholar 

  • Kalpana VN, Rajeswari V (2017) Biosynthesis of metal and metal oxide nanoparticles for food packaging and preservation: a green expertise. In: Food biosynthesis. Academic, New York, pp 293–316

    Chapter  Google Scholar 

  • Ke YC, Stroeve P (2005) Polymer-layered silicate and silica nanocomposites. Elsevier, Amsterdam

    Google Scholar 

  • Khalid M, Walvekar R, Ketabchi MR, Siddiqui H, Hoque ME (2016) Rubber/nanoclay composites: towards advanced functional materials. In Nanoclay reinforced polymer composites. Springer, Singapore, pp 209–224

    Google Scholar 

  • Kim HJ, Kim TH, Kim HM, Hong IK, Kim EJ, Choi AJ, Choi UJ, Oh JM (2016) Nano-biohybrids of engineered nanoclays and natural extract for antibacterial agents. Appl Clay Sci 134:19–25

    Article  CAS  Google Scholar 

  • Klangmuang P, Sothornvit R (2016) Combination of beeswax and nanoclay on barriers, sorption isotherm and mechanical properties of hydroxypropyl methylcellulose-based composite films. LWT-Food Sci Technol 65:222–227

    Article  CAS  Google Scholar 

  • Kreyling WG et al (2017) Quantitative biokinetics of titanium dioxide nanoparticles after intravenous injection in rats: part 1. Nanotoxicology 11:434–442. https://doi.org/10.1080/17435390.2017.1306892

    Article  CAS  PubMed  Google Scholar 

  • Kumbıçak Ü, Çavaş T, Çinkılıç N, Kumbıçak Z, Vatan Ö, Yılmaz D (2014) Evaluation of in vitro cytotoxicity and genotoxicity of copper–zinc alloy nanoparticles in human lung epithelial cells. Food Chem Toxicol 73:105–112 

    Google Scholar 

  • Lanone S et al (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:14. https://doi.org/10.1186/1743-8977-6-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SM, Diwakar T (2012) Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: an overview. Appl Clay Sci 59-60:84–102

    Google Scholar 

  • Lepot N, Van Bael MK, Van den Rul H, D’Haen J, Peeters R, Franco D, Mullens J (2011) Influence of incorporation of ZnO nanoparticles and biaxial orientation on mechanical and oxygen barrier properties of polypropylene films for food packaging applications. J Appl Polym Sci 120:1616–1623

    Article  CAS  Google Scholar 

  • Li D, Zhang J, Xu W, Fu Y (2016) Effect of SiO2/EVA on the mechanical properties, permeability, and residual solvent of polypropylene packaging films. Polym Compos 37:101–107

    Article  CAS  Google Scholar 

  • Li D, Ye Q, Jiang L, Luo Z (2017) Effects of nano-TiO2-LDPE packaging on postharvest quality and antioxidant capacity of strawberry (Fragaria ananassa Duch.) stored at refrigeration temperature. J Sci Food Agric 97:1116–1123

    Article  CAS  PubMed  Google Scholar 

  • Li W, Li L, Zhang H, Yuan M, Qin Y (2018) Evaluation of PLA nanocomposite films on physicochemical and microbiological properties of refrigerated cottage cheese. J Food Process Preserv 42:13362

    Article  CAS  Google Scholar 

  • Lin QB, Li H, Zhong HN, Zhao Q, Xiao DH, Wang ZW (2014) Migration of Ti from nano-TiO2-polyethylene composite packaging into food simulants. Food Addit Contam Part A 31(7):1284–1290

    CAS  Google Scholar 

  • Lordan S, Kennedy JE, Higginbotham CL (2011) Cytotoxic effects induced by unmodified and organically modified nanoclays in the human hepatic HepG2 cell line. J Appl Toxicol 31:27–35. https://doi.org/10.1002/jat.1564

    Article  CAS  PubMed  Google Scholar 

  • Luecha J, Sozer N, Kokini JL (2010) Synthesis and properties of corn zein/montmorillonite nanocomposite films. J Mater Sci 45(13):3529–3537

    Google Scholar 

  • Luo Z, Xu Y, Ye Q (2015) Effect of nano-SiO2-LDPE packaging on biochemical, sensory, and microbiological quality of Pacific white shrimp Penaeus vannamei during chilled storage. Fisheries Sci 81:983–993

    Article  CAS  Google Scholar 

  • Mackevica A, Olsson ME, Hansen SF (2016) Silver nanoparticle release from commercially available plastic food containers into food simulants. J Nanopart Res 18(1):5

    Article  CAS  Google Scholar 

  • Magdolenova Z et al (2012) Impact of agglomeration and different dispersions of titanium dioxide nanoparticles on the human related in vitro cytotoxicity and genotoxicity. J Environ Monit 14:455–464. https://doi.org/10.1039/c2em10746e

    Article  CAS  PubMed  Google Scholar 

  • Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8:233–278. https://doi.org/10.3109/17435390.2013.773464

    Article  CAS  PubMed  Google Scholar 

  • Memiş S, Tornuk F, Bozkurt F, Durak MZ (2017) Production and characterization of a new biodegradable fenugreek seed gum based active nanocomposite film reinforced with nanoclays. Int J Biol Macromol 103:669–675

    Article  PubMed  CAS  Google Scholar 

  • Metak AM, Nabhani F, Connolly SN (2015) Migration of engineered nanoparticles from packaging into food products. LWT-Food Sci Technol 64(2):781–787

    Article  CAS  Google Scholar 

  • Muñoz-Shugulí C, Rodríguez FJ, Bruna JE, Galotto MJ, Sarantópoulos C, Perez MAF, Padula M (2019) Cetylpyridinium bromide-modified montmorillonite as filler in low density polyethylene nanocomposite films. Appl Clay Sci 168:203–210

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • Noshirvani N, Ghanbarzadeh B, Rezaei Mokarram R, Hashemi M (2017) Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. Food Packaging Shelf 11:106–114

    Article  Google Scholar 

  • Orsuwan A, Sothornvit R (2017) Development and characterization of banana flour film incorporated with montmorillonite and banana starch nanoparticles. Carbohydr Polym 174:235–242

    Article  CAS  PubMed  Google Scholar 

  • Ouzounidou G, Fragiskos G (2011) The use of nano-technology in shelf life extension of green vegetables. J Innovat Economic Manag 2:163–171

    Article  Google Scholar 

  • Ozaki A, Kishi E, Ooshima T, Hase A, Kawamura Y (2016) Contents of Ag and other metals in food-contact plastics with nanosilver or Ag ion and their migration into food simulants. Food Addit Contam Part A 33(9):1490–1498

    Article  CAS  Google Scholar 

  • Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16(1):2099–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panea B, Ripoll G, Gonzalez J, Fernandez-Cuello A, Albertí P (2014) Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. J Food Eng 123:104–112

    Article  CAS  Google Scholar 

  • Pinnavaia TJ, Beall GW (2000) Polymer-clay nanocomposites. Wiley, Hoboken

    Google Scholar 

  • Pires JRA, de Souza GL, Fernando AL (2018) Chitosan/montmorillonite bionanocomposites incorporated with rosemary and ginger essential oil as packaging for fresh poultry meat. J Food Pack Shelf Life 17:142–149

    Article  Google Scholar 

  • Polat S, Fenercioğlu H, Güçlü M (2018a) Effects of metal nanoparticles on the physical and migration properties of low density polyethylene films. J Food Eng 229:32–42

    Article  CAS  Google Scholar 

  • Polat S, Fenercioglu H, Unal TE, Guclu M (2018b) Effects of nanoparticle ratio on structural, migration properties of polypropylene films and preservation quality of lemon juice. J Food Process Preserv 42(4):e13541

    Article  CAS  Google Scholar 

  • Prasad P, Kochhar A (2014) Active packaging in food industry: a review. J Environ Sci Toxicol Food Technol 8(5):1–7

    Google Scholar 

  • Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  • Rijk R, Veraart R (eds) (2010) Global legislation for food packaging materials. Wiley, Hoboken

    Google Scholar 

  • Rostamzad H, Paighambari SY, Shabanpour B, Ojagh SM, Mousav SM (2016) Improvement of fish protein film with nanoclay and transglutaminase for food packaging. J Food Pack Shelf 7:1–7

    Article  Google Scholar 

  • Saddick S, Afifi M, Abu Zinada OA (2017) Effect of zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 24:1672–1678. https://doi.org/10.1016/j.sjbs.2015.10.021

    Article  CAS  PubMed  Google Scholar 

  • Shin J, Selke SEM (2014) 11-food packaging. In: Clark S, Jung S, Lamsal B (eds) Food processing: principles and applications, 2nd edn. Wiley, Hoboken, pp 249–273

    Chapter  Google Scholar 

  • Smolkova B, El Yamani N, Collins AR, Gutleb AC, Dusinska M (2015) Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food Chem Toxicol 77:64–73. https://doi.org/10.1016/j.fct.2014.12.015

    Article  CAS  PubMed  Google Scholar 

  • Störmer A, Bott J, Kemmer D, Franz R (2017) Critical review of the migration potential of nanoparticles in food contact plastics. Trends Food Sci Technol 63:39–50

    Article  CAS  Google Scholar 

  • Sycheva LP, Zhurkov VS, Iurchenko VV, Daugel-Dauge NO, Kovalenko MA, Krivtsova EK, Durnev AD (2011) Investigation of genotoxic and cytotoxic effects of micro- and nanosized titanium dioxide in six organs of mice in vivo. Mutat Res-Gen Tox En 726:8–14

    Article  CAS  Google Scholar 

  • Tamayo L, Palza H, Bejarano J, Zapata PA (2019) Polymer composites with metal nanoparticles: synthesis, properties, and applications. In: Polymer composites with functionalized nanoparticles. Elsevier, pp. 249–286

    Google Scholar 

  • Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellov M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:795–821. https://doi.org/10.1080/02652030802007553

    Article  CAS  PubMed  Google Scholar 

  • Tornuk F, Sagdic O, Hancer M, Yetim H (2018) Development of LLDPE based active nanocomposite films with nanoclays impregnated with volatile compounds. Food Res Int 107:337–345

    Article  CAS  PubMed  Google Scholar 

  • Vaezi K, Asadpour G, Sharifi H (2019) Effect of ZnO nanoparticles on the mechanical, barrier and optical properties of thermoplastic cationic starch/montmorillonite biodegradable films. Int J Biol Macromol 124:519–529

    Article  CAS  PubMed  Google Scholar 

  • Valerini D, Tammaro L, Di Benedetto F, Vigliotta G, Capodieci L, Terzi R, Rizzo A (2018) Aluminum-doped zinc oxide coatings on polylactic acid films for antimicrobial food packaging. Thin Solid Films 645:187–192

    Article  CAS  Google Scholar 

  • Vega-Villa KR, Takemoto JK, Yanez JA, Remsberg CM, Forrest ML, Davies NM (2008) Clinical toxicities of nanocarrier systems. Adv Drug Deliv Rev 60(8):929–938

    Google Scholar 

  • Vejdan A, Ojagh S, Abdollahi M (2017) Effect of gelatin/agar bilayer film incorporated with TiO2 nanoparticles as a UV absorbent on fish oil photooxidation. J Food Sci Technol 52:1862–1868

    Article  CAS  Google Scholar 

  • Venkatesan R, Rajeswari N (2017) ZnO/PBAT nanocomposite films: investigation on the mechanical and biological activity for food packaging. Polym Adv Technol 28:20–27

    Article  CAS  Google Scholar 

  • von Goetz N, Fabricius L, Glaus R, Weitbrecht V, Günther D, Hungerbühler K (2013) Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Addit Contam Part A 30(3):612–620

    Google Scholar 

  • Wang C et al. (2016) Effects of long-term exposure to zinc oxide nanoparticles on development, zinc metabolism and biodistribution of M references

    Google Scholar 

  • Yalcin B, Cakmak M (2004) Superstructural hierarchy developed in coupled high shear/high thermal gradient conditions of injection molding in nylon 6 nanocomposites. Polymer 45(8):2691–2710

    Article  CAS  Google Scholar 

  • Zapata PA, Tamayo L, Paez M, Cerda E, Azocar I, Rabagliati FM (2011) Nanocomposites based on polyethylene and nanosilver particles produced by metallocenic in situ polymerization: synthesis, characterization, and antimicrobial behavior. Eur Polym J 47:1541–1549

    Article  CAS  Google Scholar 

  • Zhang Y, Zhou L, Zhang Y (2014) Investigation of UV–TiO2 photocatalysis and its mechanism in Bacillus subtilis spore inactivation. J Environ Sci 26:1943–1948

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Süleyman Polat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polat, S., Ağçam, E., Dündar, B., Akyildiz, A. (2019). Nanoparticles in Food Packaging: Opportunities and Challenges. In: Malik, A., Erginkaya, Z., Erten, H. (eds) Health and Safety Aspects of Food Processing Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-24903-8_21

Download citation

Publish with us

Policies and ethics