Skip to main content

Privacy-Preserving Big Data Analytics: From Theory to Practice

  • Conference paper
  • First Online:
Security, Privacy, and Anonymity in Computation, Communication, and Storage (SpaCCS 2019)

Abstract

In the last decade, with the advent of Internet of Things (IoT) and Big Data phenomenons, data security and privacy have become very crucial issues. A significant portion of the problem is due to not utilizing appropriate security and privacy measures in data and computational infrastructures. Secure multiparty computation (secure MPC) is a cryptographic tool that can be used to deal with the mentioned problems. This computational approach has attracted increasing attention, and there has been significant amount of advancement in this domain. In this paper, we review the important theoretical bases and practical advancements of secure multiparty computation. In particular, we briefly review three common cryptographic primitives used in secure MPC and highlight the main arithmetic operations that are performed at the core of secure MPC protocols. We also highlight the strengths and weaknesses of different secure MPC approaches as well as the fundamental challenges in this domain. Moreover, we review and compare the state-of-the-art secure MPC tools that can be used for addressing security and privacy challenges in the IoT and big data analytics. Using secure MPC in the IoT and big data domains is a challenging task and requires significant expert knowledge. This technical review aims at instilling in the reader an enhanced understanding of different approaches in applying secure MPC techniques to the IoT and big data analytics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption schemes: theory and implementation. ACM Comput. Surv. (CSUR) 51(4), 79 (2018)

    Article  Google Scholar 

  2. Alx, P.S.N., Alx, N.V., Au, P.F., Au, C.O., Au, P.S., Au, M.S., Phi, M.V., Tue, N.B., Tue, B.S.: D1. 1 state of the art analysis of MPC techniques and frameworks (2017)

    Google Scholar 

  3. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party computation. In: Proceedings of the 15th ACM Conference on Computer and Communications Security, pp. 257–266. ACM (2008)

    Google Scholar 

  4. BigDataWorkingGroup: Expanded top ten big data security and privacy challenges (2013). https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Expanded_Top_Ten_Big_Data_Security_and_Privacy_Challenges.pdf

  5. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5_13

    Chapter  Google Scholar 

  6. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. In: NDSS, vol. 4324, p. 4325 (2015)

    Google Scholar 

  7. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_17

    Chapter  Google Scholar 

  8. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: privacy-preserving aggregation of multi-domain network events and statistics. In: USENIX Security Symposium, Washington, DC, USA, pp. 223–239 (2010)

    Google Scholar 

  9. Chen, H., et al.: Logistic regression over encrypted data from fully homomorphic encryption. BMC Med. Genomics 11(4), 81 (2018)

    Article  Google Scholar 

  10. Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty computation: theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_10

    Chapter  Google Scholar 

  11. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  12. Demmler, D., Schneider, T., Zohner, M.: ABY-a framework for efficient mixed-protocol secure two-party computation. In: NDSS (2015)

    Google Scholar 

  13. Ejgenberg, Y., Farbstein, M., Levy, M., Lindell, Y.: SCAPI: the secure computation application programming interface. IACR Cryptology EPrint Archive 2012, 629 (2012)

    Google Scholar 

  14. Fraser, W.: A survey of methods of computing minimax and near-minimax polynomial approximations for functions of a single independent variable. J. ACM (JACM) 12(3), 295–314 (1965)

    Article  MathSciNet  Google Scholar 

  15. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: STOC vol. 9, pp. 169–178 (2009)

    Google Scholar 

  16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM (1987)

    Google Scholar 

  17. Henecka, W., Sadeghi, A.R., Schneider, T., Wehrenberg, I., et al.: TASTY: tool for automating secure two-party computations. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, pp. 451–462. ACM (2010)

    Google Scholar 

  18. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service provision. Decis. Support Syst. 43(2), 618–644 (2007)

    Article  Google Scholar 

  19. Kaisler, S., Armour, F., Espinosa, J.A., Money, W.: Big data: issues and challenges moving forward. In: 2013 46th Hawaii International Conference on System Sciences, pp. 995–1004. IEEE (2013)

    Google Scholar 

  20. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10433-6_1

    Chapter  MATH  Google Scholar 

  21. LaValle, S., Lesser, E., Shockley, R., Hopkins, M.S., Kruschwitz, N.: Big data, analytics and the path from insights to value. MIT Sloan Manag. Rev. 52(2), 21 (2011)

    Google Scholar 

  22. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y., et al.: Fairplay-secure two-party computation system. In: USENIX Security Symposium, vol. 4, p. 9. San Diego (2004)

    Google Scholar 

  23. Mood, B., Gupta, D., Carter, H., Butler, K., Traynor, P.: Frigate: a validated, extensible, and efficient compiler and interpreter for secure computation. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 112–127. IEEE (2016)

    Google Scholar 

  24. Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., Muharemagic, E.: Deep learning applications and challenges in big data analytics. J. Big Data 2(1), 1 (2015)

    Article  Google Scholar 

  25. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  26. Raeini, M.G., Nojoumian, M.: Secure error correction using multiparty computation. In: 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), pp. 468–473. IEEE (2018)

    Google Scholar 

  27. Rastogi, A., Hammer, M.A., Hicks, M.: Wysteria: a programming language for generic, mixed-mode multiparty computations. In: 2014 IEEE Symposium on Security and Privacy, pp. 655–670. IEEE (2014)

    Google Scholar 

  28. Rastogi, A., Swamy, N., Hicks, M.: Wys\(^\star \): a DSL for verified secure multi-party computations. In: Nielson, F., Sands, D. (eds.) POST 2019. LNCS, vol. 11426, pp. 99–122. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17138-4_5

    Chapter  Google Scholar 

  29. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushanfar, F.: Chameleon: a hybrid secure computation framework for machine learning applications. In: Proceedings of the 2018 on Asia Conference on Computer and Communications Security, pp. 707–721. ACM (2018)

    Google Scholar 

  30. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)

    MathSciNet  Google Scholar 

  31. Schneider, M., Schneider, T.: Notes on non-interactive secure comparison in image feature extraction in the encrypted domain with privacy-preserving sift. In: Proceedings of the 2nd ACM workshop on Information hiding and multimedia security, pp. 135–140. ACM (2014)

    Google Scholar 

  32. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  33. Sousa, P.R., Antunes, L., Martins, R.: The present and future of privacy-preserving computation in fog computing. In: Rahmani, A.M., Liljeberg, P., Preden, J.-S., Jantsch, A. (eds.) Fog Computing in the Internet of Things, pp. 51–69. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-57639-8_4

    Chapter  Google Scholar 

  34. Tonyali, S., Akkaya, K., Saputro, N., Uluagac, A.S., Nojoumian, M.: Privacy-preserving protocols for secure and reliable data aggregation in IOT-enabled smart metering systems. Future Gener. Comput. Syst. 78, 547–557 (2018)

    Article  Google Scholar 

  35. Volgushev, N., Schwarzkopf, M., Getchell, B., Varia, M., Lapets, A., Bestavros, A.: Conclave: secure multi-party computation on big data. In: Proceedings of the Fourteenth EuroSys Conference 2019, p. 3. ACM (2019)

    Google Scholar 

  36. Volgushev, N., Schwarzkopf, M., Lapets, A., Varia, M., Bestavros, A.: Integrating MPC in big data workflows. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. pp. 1844–1846. ACM (2016)

    Google Scholar 

  37. Yao, A.C.C.: Protocols for secure computations. In: FOCS, vol. 82, pp. 160–164 (1982)

    Google Scholar 

  38. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pp. 162–167. IEEE (1986)

    Google Scholar 

  39. Zahur, S., Evans, D.: Obliv-c: a language for extensible data-oblivious computation. IACR Cryptology ePrint Archive (2015)

    Google Scholar 

  40. Zarpelao, B.B., Miani, R.S., Kawakani, C.T., de Alvarenga, S.C.: A survey of intrusion detection in Internet of Things. J. Netw. Comput. Appl. 84, 25–37 (2017)

    Article  Google Scholar 

  41. Zhang, Y., Steele, A., Blanton, M.: PICCO: a general-purpose compiler for private distributed computation. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and communications security, pp. 813–826. ACM (2013)

    Google Scholar 

  42. Zyskind, G., Nathan, O., Pentland, A.: Enigma: Decentralized computation platform with guaranteed privacy. arXiv preprint arXiv:1506.03471 (2015)

  43. Zyskind, G., Nathan, O., et al.: Decentralizing privacy: using blockchain to protect personal data. In: Security and Privacy Workshops (SPW), 2015 IEEE, pp. 180–184. IEEE (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad G. Raeini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

G. Raeini, M., Nojoumian, M. (2019). Privacy-Preserving Big Data Analytics: From Theory to Practice. In: Wang, G., Feng, J., Bhuiyan, M., Lu, R. (eds) Security, Privacy, and Anonymity in Computation, Communication, and Storage. SpaCCS 2019. Lecture Notes in Computer Science(), vol 11637. Springer, Cham. https://doi.org/10.1007/978-3-030-24900-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24900-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24899-4

  • Online ISBN: 978-3-030-24900-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics