Skip to main content

Industrial IoT Projects Based on Automation Pyramid: Constraints and Minimum Requirements

  • Chapter
  • First Online:
The Internet of Things in the Industrial Sector

Abstract

The industrial sector requires to improve the quality of processes to increase competitiveness. In addition, interconnectivity has seen a huge development based on teamwork related to hardware and software, which is the basis of Industrial Internet of Things (IIoT) vision. In this context, the automation pyramid concept defines the integration of relevant technologies, based on several hierarchical levels of automation, that working correctly together can improve the quality of processes without high-end hardware and software requirements. Therefore, it is important to clarify the relationship between all levels of automation in the IIoT context, emphasizing that the backbone of the IIoT is the optimal design and implementation of hardware and software based on real constraints for particular users; in order to increase the level of effectiveness and competitiveness. This chapter presents the real constraints for IIoT projects related to the state of the art of each level of automation of the automation pyramid. It also proposes the general minimum requirements necessary to develop an optimum IIoT system. These minimum requirements will promote the use of optional hardware and software to relax the design and implementation of IIoT projects based on cost-effectiveness analysis. Finally, the minimum requirements proposed and the detail description of the logical topology for IIoT projects can be used as a roadmap to increase the industrial competitiveness based on efficient use of resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54:2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010

    Article  MATH  Google Scholar 

  2. Whitmore A, Agarwal A, Xu LD (2015) The internet of things—a survey of topics and trends. Inf Syst Front 17:261–274. https://doi.org/10.1007/s10796-014-9489-2

    Article  Google Scholar 

  3. Marr B (2015) Big data: using SMART big data, analytics and metrics to make better decisions and improve performance. Wiley, Chichester

    Google Scholar 

  4. Mazhar Rathore M, Ahmad A, Paul A, Rho S (2016) Urban planning and building smart cities based on the internet of things using big data analytics. Comput Netw 101:63–80. https://doi.org/10.1016/j.comnet.2015.12.023

    Article  Google Scholar 

  5. Hatzivasilis G, Fysarakis K, Soultatos O, Askoxylakis I, Papaefstathiou I, Demetriou G (2018) The industrial internet of things as an enabler for a circular economy Hy-LP: a novel IIoT protocol, evaluated on a wind park’s SDN/NFV-enabled 5G industrial network. Comput Commun 119:127–137. https://doi.org/10.1016/j.comcom.2018.02.007

    Article  Google Scholar 

  6. Mumtaz S, Alsohaily A, Pang Z, Rayes A, Tsang KF, Rodriguez J (2017) Massive Inter-net of things for industrial applications: addressing wireless IIoT connectivity challenges and ecosystem fragmentation. Ind Electr Mag 11:28–33. https://doi.org/10.1109/MIE.2016.2618724

    Article  Google Scholar 

  7. Popescu GH (2015) The economic value of the industrial internet of things. J Self-Gov Manage Econ 3:86–91

    Google Scholar 

  8. Jeschke S, Brecher C, Meisen T, Özdemir D, Eschert T (2017) Industrial internet of things and cyber manufacturing systems. In: Jeschke S, Brecher C, Song H, Rawat D (eds) Industrial internet of things. Springer series in wireless technology. Springer, Cham

    Google Scholar 

  9. Ferrández-Pastor FJ, García-Chamizo J, Nieto-Hidalgo M, Mora-Pascual J, Mora-Martínez J (2016) Developing ubiquitous sensor network platform using internet of things: application in precision agriculture. Sensors 16:1141–1161. https://doi.org/10.3390/s16071141

    Article  Google Scholar 

  10. Du S, Liu B, Ma H, Wu G, Wu P (2018) IIOT-based intelligent control and management system for motorcycle endurance test. Access 6:30567–30576. https://doi.org/10.1109/ACCESS.2018.2841185

    Article  Google Scholar 

  11. Tie Q, Wu DO, Prathap P (2017) Introduction to the special section on software architecture and modeling for industrial internet of things. Comput Elect Eng 58:241–243. https://doi.org/10.1016/j.compeleceng.2017.04.022

    Article  Google Scholar 

  12. Bauer H, Brandl F, Lock C, Reinhart G (2018) Integration of industrie 4.0 in lean manufacturing learning factories. Procedia Manuf 23:147–152. https://doi.org/10.1016/j.promfg.2018.04.008

    Article  Google Scholar 

  13. Sanders A, Elangeswaran C, Wulfsberg J (2016) Industry 4.0 implies lean manufacturing: research activities in industry 4.0 function as enablers for lean manufacturing. J Ind Eng Manage 9:811–833. https://doi.org/10.3926/jiem.1940

    Article  Google Scholar 

  14. Krijnen A (2007) The toyota way: 14 management principles from the world’s greatest manufacturer. Action Learn Res Practice 4:1109–1111. https://doi.org/10.1080/14767330701234002

    Article  Google Scholar 

  15. Ray PP (2018) A survey on internet of things architectures. J King Saud Univ Comput Inf Sci 30:291–319. https://doi.org/10.1016/j.jksuci.2016.10.0031

    Article  Google Scholar 

  16. Adamo F, Attivissimo F, Cavone G, Giaquinto N (2007) SCADA/HMI systems in advanced educational courses. Trans Instrum Meas 56:4–10. https://doi.org/10.1109/TIM.2006.887216

    Article  Google Scholar 

  17. Biswal GR, Maheshwari RP, Dewal ML (2012) Modeling, control, and monitoring of S3RS-based hydrogen cooling system in thermal power plant. Trans Ind Electr 59:562–570. https://doi.org/10.1109/TIE.2011.2134059

    Article  Google Scholar 

  18. Romero-Acero A, Marin-Cano A, Jimenez-Builes JA (2014) SCADA system for detection of explosive atmospheres in underground coal mines through wireless sensor network. Latin Am Trans 12:1398–1403. https://doi.org/10.1109/TLA.2014.7014506

    Article  Google Scholar 

  19. Tyagi H, Yadav R, Patel K, Bandyopadhyay M, Rotti C, Sudhir D, Gahlaut A, Pandya K, Chakraborty A, Trivedi T (2017) Development of data acquisition and control system for long pulse operations of Indian test facility of ITER DNB. Trans Nucl Sci 64:1426–1430. https://doi.org/10.1109/TNS.2017.2684243

    Article  Google Scholar 

  20. Wollschlaeger M, Sauter T, Jasperneite J (2017) The future of industrial communication: automation networks in the era of the internet of things and industry 4.0. Ind Electr Mag 11:17–27. https://doi.org/10.1109/MIE.2017.2649104

    Article  Google Scholar 

  21. Tahir Y, Yang S, McCann J (2018) BRPL: backpressure RPL for high-throughput and mobile IoTs. Trans Mobile Comput 17:29–43. https://doi.org/10.1109/TMC.2017.2705680

    Article  Google Scholar 

  22. Lopes De Faria ML, Cugnasca CE, Amazonas JRA (2018) Insights into IoT data and an innovative DWT-based technique to denoise sensor signals. Sens J 18:237–247. https://doi.org/10.1109/JSEN.2017.2767383

    Article  Google Scholar 

  23. Chen J, Cao X, Cheng P, Xiao Y, Sun Y (2010) Distributed collaborative control for industrial automation with wireless sensor and actuator networks. Trans Ind Electr 57:4219–4230. https://doi.org/10.1109/TIE.2010.2043038

    Article  Google Scholar 

  24. Wang S, Hou Y, Gao F, Ma S (2016) A novel clock synchronization architecture for IoT access system. In: International conference on computer and communications, pp 1456–1459. https://doi.org/10.1109/compcomm.2016.7924944

  25. Khattab A, Abdelgawad A, Yelmarthi K (2016) Design and implementation of a cloud-based IoT scheme for precision agriculture. In: International conference on microelectronics, 201–204. https://doi.org/10.1109/icm.2016.7847850

  26. Zhang P, Liu Y, Wu F, Liu S, Tang B (2016) Low-overhead and high-precision prediction model for content-based sensor search in the internet of things. IEEE Commun Lett 20:720–723. https://doi.org/10.1109/LCOMM.2016.2521735

    Article  Google Scholar 

  27. Yang P (2015) PRLS-INVES: a general experimental investigation strategy for high accuracy and precision in passive RFID location systems. Internet Things J 2:159–167. https://doi.org/10.1109/JIOT.2014.2377351

    Article  Google Scholar 

  28. Sun Y, Song H, Jara AJ, Bie R (2016) Internet of things and big data analytics for smart and connected communities. Access 4:766–773. https://doi.org/10.1109/ACCESS.2016.2529723

    Article  Google Scholar 

  29. Chi Q, Yan H, Zhang C, Pang Z, Xu LD (2014) A reconfigurable smart sensor interface for industrial WSN in IoT environment. Trans Ind Inf 10:1417–1425. https://doi.org/10.1109/TII.2014.2306798

    Article  Google Scholar 

  30. Dou R, Nan G (2017) Optimizing sensor network coverage and regional connectivity in industrial IoT systems. Syst J 11:1351–1360. https://doi.org/10.1109/JSYST.2015.2443045

    Article  Google Scholar 

  31. Qin Z, Wu D, Xiao Z, Fu B, Qin Z (2018) Modeling and analysis of data aggregation from convergecast in mobile sensor networks for industrial IoT. Trans Ind Inf 14:4457–4467. https://doi.org/10.1109/TII.2018.2846687

    Article  Google Scholar 

  32. da Cruz MAA, Rodrigues JJPC, Al-Muhtadi J, Korotaev VV, de Albuquerque VHC (2018) A reference model for internet of things middleware. Internet Things J 5:871–883. https://doi.org/10.1109/JIOT.2018.2796561

    Article  Google Scholar 

  33. Sheng Z, Mahapatra C, Zhu C, Leung VCM (2015) Recent advances in industrial wireless sensor networks toward efficient management in IoT. Access 3:622–637. https://doi.org/10.1109/ACCESS.2015.2435000

    Article  Google Scholar 

  34. Oteafy SMA, Hassanein HS (2017) Resilient IoT architectures over dynamic sensor networks with adaptive components. Int Things J 4:474–483. https://doi.org/10.1109/JIOT.2016.2621998

    Article  Google Scholar 

  35. Lyu L, Chen C, Zhu S, Guan X (2018) 5G enabled codesign of energy-efficient trans-mission and estimation for industrial IoT systems. Trans Ind Inf 14:2690–2704. https://doi.org/10.1109/TII.2018.2799685

    Article  Google Scholar 

  36. Zhu R, Zhang X, Liu X, Shu W, Mao T, Jalaian B (2015) ERDT: energy-efficient reliable decision transmission for intelligent cooperative spectrum sensing in industrial IoT. Access 3:2366–2378. https://doi.org/10.1109/ACCESS.2015.2501644

    Article  Google Scholar 

  37. Williams JM, Khanna R, Ruiz-Rosero JP, Pisharody G, Qian Y, Carlson CR, Liu H, Ramirez-Gonzalez G (2017) Weaving the wireless web: toward a low-power, dense wireless sensor network for the industrial IoT. Microw Mag 18:40–63. https://doi.org/10.1109/MMM.2017.2740738

    Article  Google Scholar 

  38. Nwadiugwu WP, Kim D-S (2018) Energy-efficient sensors in data centers for industrial internet of things (IIoT). In: International conference on internet of things: smart innovation and usages, pp 1–6. https://doi.org/10.13140/rg.2.2.31491.71208

  39. Tang J, So DKC, Zhao N, Shojaeifard A, Wong K (2018) Energy efficiency optimization with SWIPT in MIMO broadcast channels for internet of things. Internet Things J 5:2605–2619. https://doi.org/10.1109/JIOT.2017.2785861

    Article  Google Scholar 

  40. Li Z, Xi J, He L, Sun K (2016) A front-end circuit with 16-channel 12-bit 100-kSps RC-hybrid SAR ADC for industrial monitoring application. In: Asia Pacific conference on circuits and systems, pp 340–343. https://doi.org/10.1109/apccas.2016.7803970

  41. Zhang DC, Swaminathan M, Raychowdhury A, Keezer D (2017) Enhancing the bandwidth of low-dropout regulators using power transmission lines for high-speed I/Os. Trans Compon Packag Manuf Technol 7:533–543. https://doi.org/10.1109/TCPMT.2017.2655002

    Article  Google Scholar 

  42. Ghosh A, Qin S, Lee J, Wang G (2017) FBMTP: An automated fault and behavioral anomaly detection and isolation tool for PLC-Controlled manufacturing systems. Trans Syst Man Cybern Syst 47:3397–3417. https://doi.org/10.1109/TSMC.2016.2633392

    Article  Google Scholar 

  43. Li Z, Zang C, Zeng P, Yu H, Li S (2018) Fully distributed hierarchical control of parallel grid-supporting inverters in islanded AC microgrids. Trans Ind Inf 14:679–690. https://doi.org/10.1109/TII.2017.2749424

    Article  Google Scholar 

  44. Kohn W, Zabinsky ZB, Nerode A (2015) A micro-grid distributed intelligent control and management system. Trans Smart Grid 6:2964–2974. https://doi.org/10.1109/TSG.2015.2455512

    Article  Google Scholar 

  45. Pramod TC, Boroojeni KG, Amini MH, Sunitha NR, Iyengar SS (2018) Key pre-distribution Scheme with join leave support for SCADA systems. Int J Critical Infrastruct Prot 2. https://doi.org/10.1016/j.ijcip.2018.10.011

    Article  Google Scholar 

  46. Fu J, Liu Y, Chao H, Bhargava BK, Zhang Z (2018) Secure data storage and searching for industrial IoT by integrating fog computing and cloud computing. Trans Ind Inf 14:4519–4528. https://doi.org/10.1109/TII.2018.2793350

    Article  Google Scholar 

  47. Kulkarni PH, Kute PD, More VN (2016) IoT based data processing for automated industrial meter reader using Raspberry Pi. In: International conference on internet of things and applications, pp 107–111. https://doi.org/10.1109/iota.2016.7562704

  48. Canedo A, Ludwig H, Al Faruque MA (2014) High communication throughput and low scan cycle time with multi/many-core programmable logic controllers. Embed Syst Lett 6:21–24. https://doi.org/10.1109/LES.2014.2299731

    Article  Google Scholar 

  49. Shen Y, Zhang T, Wang Y, Wang H, Jiang X (2017) MicroThings: a generic IoT architecture for flexible data aggregation and scalable service cooperation. Commun Mag 55:86–93. https://doi.org/10.1109/MCOM.2017.1700104

    Article  Google Scholar 

  50. Hajduk Z, Trybus B, Sadolewski J (2015) Architecture of FPGA embedded multiprocessor programmable controller. Trans Ind Electr 62:2952–2961. https://doi.org/10.1109/TIE.2014.2362888

    Article  Google Scholar 

  51. Wang T, Gao H, Qiu J (2016) A combined fault-tolerant and predictive control for network-based industrial processes. Trans Ind Electr 63:2529–2536. https://doi.org/10.1109/TIE.2016.2515073

    Article  Google Scholar 

  52. Qi H, Ayorinde O, Calhoun BH (2017) An ultra-low-power FPGA for IoT applications. in: SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), pp 1–3. https://doi.org/10.1109/s3s.2017.8308753

  53. Ikram W, Petersen S, Orten P, Thornhill NF (2014) Adaptive multi-channel transmission power control for industrial wireless instrumentation. Trans Ind Inf 10:978–990. https://doi.org/10.1109/TII.2014.2310594

    Article  Google Scholar 

  54. Zhao M, Ho IW, Chong PHJ (2016) An energy-efficient region-based RPL routing protocol for low-power and lossy networks. Internet Things J 3:1319–1333. https://doi.org/10.1109/JIOT.2016.2593438

    Article  Google Scholar 

  55. Ahmed I, Obermeier S, Sudhakaran S, Roussev V (2017) Programmable logic controller forensics. Secur Priv 15:18–24. https://doi.org/10.1109/MSP.2017.4251102

    Article  Google Scholar 

  56. Alves T, Das R, Morris T (2018) Embedding encryption and machine learning intrusion prevention systems on programmable logic controllers. Embed Syst Lett 10:99–102. https://doi.org/10.1109/LES.2018.2823906

    Article  Google Scholar 

  57. Zhang H, Jiang Y, Hung WNN, Song X, Gu M, Sun J (2014) Symbolic analysis of programmable logic controllers. Trans Comput 63:2563–2575. https://doi.org/10.1109/TC.2013.124

    Article  MathSciNet  MATH  Google Scholar 

  58. Cronin P, Hosseini FS, Yang C (2018) A low overhead solution to resilient assembly lines built from legacy controllers. Embed Syst Lett 10:103–106. https://doi.org/10.1109/LES.2018.2829768

    Article  Google Scholar 

  59. Grilo AM, Chen J, Díaz M, Garrido D, Casaca A (2014) An integrated WSAN and SCADA system for monitoring a critical infrastructure. Trans Ind Inf 10:1755–1764. https://doi.org/10.1109/TII.2014.2322818

    Article  Google Scholar 

  60. Lee B, Kim D-K (2017) Harmonizing IEC 61850 and CIM for connectivity of substation automation. Comput Stand Interfaces 50:199–208. https://doi.org/10.1016/j.csi.2016.10.008

    Article  Google Scholar 

  61. Enache D, Chenaru O, Popescu D (2016) Performance and load analysis for remote plant connectivity using GSM communication. In: Telecommun Forum, pp 1–4. https://doi.org/10.1109/telfor.2016.7818744

  62. Montaña DAM, Rodriguez DFC, Ivan Clavijo Rey D, Ramos G (2018) Hardware and software integration as a realist SCADA environment to test protective relaying control. Trans Ind Appl 54:1208–1217. https://doi.org/10.1109/TIA.2017.2780051

    Article  Google Scholar 

  63. Alcaide-Moreno BA, Fuerte-Esquivel CR, Glavic M, Van Cutsem T (2018) Electric power network state tracking from multirate measurements. Trans Instrum Meas 67:33–44. https://doi.org/10.1109/TIM.2017.2754838

    Article  Google Scholar 

  64. Kirsch J, Goose S, Amir Y, Wei D, Skare P (2014) Survivable SCADA via intrusion-tolerant replication. Trans Smart Grid 5:60–70. https://doi.org/10.1109/TSG.2013.2269541

    Article  Google Scholar 

  65. Samtani S, Yu S, Zhu H, Patton M, Matherly J, Chen H (2018) Identifying SCADA systems and their vulnerabilities on the internet of things: a text-mining approach. Intell Syst 33:63–73. https://doi.org/10.1109/MIS.2018.111145022

    Article  Google Scholar 

  66. Yang Y, McLaughlin K, Sezer S, Littler T, Im EG, Pranggono B, Wang HF (2014) Multiattribute SCADA-specific intrusion detection system for power networks. Trans Power Deliv 29:1092–1102. https://doi.org/10.1109/TPWRD.2014.2300099

    Article  Google Scholar 

  67. Amoah R, Camtepe S, Foo E (2016) Securing DNP3 broadcast communications in SCADA systems. Trans Ind Inf 12:1474–1485. https://doi.org/10.1109/TII.2016.2587883

    Article  Google Scholar 

  68. Coffey K, Maglaras LA, Smith R, Janicke H, Ferrag MA, Derhab A, Mukherjee M, Rallis S, Yousaf A (2018) Vulnerability assessment of cyber security for SCADA systems. In: Parkinson S, Crampton A, Hill R (eds) Guide to vulnerability analysis for computer networks and Systems. Computer communications and networks. Springer, Cham

    Google Scholar 

  69. Choi D, Xie L (2014) Sensitivity analysis of real-time locational marginal price to SCADA sensor data corruption. Trans Power Syst 29:1110–1120. https://doi.org/10.1109/TPWRS.2013.2293634

    Article  Google Scholar 

  70. Dong Q, Sun J, Wu Q, Liu Y (2017) A method for filtering low frequency disturbance in PMU data before coordinated usage in SCADA. Trans Power Syst 32:2810–2816. https://doi.org/10.1109/TPWRS.2016.2615309

    Article  Google Scholar 

  71. Papatheou E, Dervilis N, Maguire AE, Antoniadou I, Worden K (2015) A performance monitoring approach for the novel Lillgrund offshore wind farm. Trans Ind Electr 62:6636–6644. https://doi.org/10.1109/TIE.2015.2442212

    Article  Google Scholar 

  72. Almada-Lobo F (2015) The industry 4.0 revolution and the future of manufacturing execution systems (MES). J Innov Manage 3:16–21

    Article  Google Scholar 

  73. Tao F, Cheng J, Cheng Y, Gu S, Zheng T, Yang H (2017) SDMSim: a manufacturing service supply-demand matching simulator under cloud environment. Robot Comput Integ Manuf 45:34–46. https://doi.org/10.1016/j.rcim.2016.07.001

    Article  Google Scholar 

  74. Xu P, Mei H, Ren L, Chen W (2017) ViDX: visual diagnostics of assembly line performance in smart factories. Trans Vis Comput Gr 23:291–300. https://doi.org/10.1109/TVCG.2016.2598664

    Article  Google Scholar 

  75. Giret A, Trentesaux D, Prabhu V (2015) Sustainability in manufacturing operations scheduling: a state of the art review. J Manuf Syst 37:126–140. https://doi.org/10.1016/j.jmsy.2015.08.002

    Article  Google Scholar 

  76. He W, Xu L (2015) A state-of-the-art survey of cloud manufacturing. Int J Comput Integr Manuf 28:239–250. https://doi.org/10.1080/0951192X.2013.874595

    Article  Google Scholar 

  77. Isaksson AJ, Harjunkoski I, Sand G (2018) The impact of digitalization on the future of control and operations. Comput Chem Eng 114:122–129. https://doi.org/10.1016/j.compchemeng.2017.10.037

    Article  Google Scholar 

  78. Iarovyi S, Mohammed WM, Lobov A, Ferrer BR, Lastra JLM (2016) Cyber-physical systems for open-knowledge-driven manufacturing execution systems. IEEE Proc 104:1142–1154. https://doi.org/10.1109/JPROC.2015.2509498

    Article  Google Scholar 

  79. Mitrea D, Tamas L (2018) Manufacturing execution system specific data analysis-use case with a cobot. Access 6:50245–50259. https://doi.org/10.1109/ACCESS.2018.2869346

    Article  Google Scholar 

  80. Cardin O, Trentesaux D, Thomas A, Castagna P, Berger T, El-Haouzi HB (2017) Coupling predictive scheduling and reactive control in manufacturing hybrid control architectures: state of the art and future challenges. J Intell Manuf 28:1503–1517. https://doi.org/10.1007/s10845-015-1139-0

    Article  Google Scholar 

  81. Zong W, Wu F, Jiang Z (2017) A Markov-based update policy for constantly changing database systems. Trans Eng Manage 64:287–300. https://doi.org/10.1109/TEM.2017.2648516

    Article  Google Scholar 

  82. Gai K, Qiu M, Zhao H, Sun X (2018) Resource management in sustainable cyber-physical systems using heterogeneous cloud computing. Trans Sustain Comput 3:60–72. https://doi.org/10.1109/TSUSC.2017.2723954

    Article  Google Scholar 

  83. Tracy KW (2016) Cloud application sprawl in enterprise applications. Potentials 35:26–29. https://doi.org/10.1109/MPOT.2015.2423690

    Article  Google Scholar 

  84. Yin J, Lu X, Pu C, Wu Z, Chen H (2015) JTangCSB: a cloud service bus for cloud and enterprise application integration. Internet Comput 19:35–43. https://doi.org/10.1109/MIC.2014.62

    Article  Google Scholar 

  85. Gallardo G, Hernantes J, Serrano N (2018) Designing SaaS for enterprise adoption based on task, company, and value-chain context. Internet Comput 22:37–45. https://doi.org/10.1109/MIC.2018.043051463

    Article  Google Scholar 

  86. Hwang J (2016) Toward beneficial transformation of enterprise workloads to hybrid clouds. Trans Netw Serv Manage 13:295–307. https://doi.org/10.1109/TNSM.2016.2541120

    Article  Google Scholar 

  87. Gupta S, Misra SC (2016) Moderating effect of compliance, network, and security on the critical success factors in the implementation of cloud ERP. Trans Cloud Comput 4:440–451. https://doi.org/10.1109/TCC.2016.2617365

    Article  Google Scholar 

  88. Bonino D, De Russis L, Corno F, Ferrero G (2014) JEERP: energy-aware enterprise resource planning. IT Prof 16:50–56. https://doi.org/10.1109/MITP.2013.22

    Article  Google Scholar 

  89. Tarafdar M, Beath CM, Ross JW (2017) Enterprise cognitive computing applications: opportunities and challenges. IT Prof 19:21–27. https://doi.org/10.1109/MITP.2017.3051321

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. López-Leyva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López-Leyva, J.A., Talamantes-Álvarez, A., Ponce-Camacho, M.A., Meza-Arballo, O., Valadez-Rivera, B., Casemiro-Oliveira, L. (2019). Industrial IoT Projects Based on Automation Pyramid: Constraints and Minimum Requirements. In: Mahmood, Z. (eds) The Internet of Things in the Industrial Sector. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-24892-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24892-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24891-8

  • Online ISBN: 978-3-030-24892-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics