Skip to main content

Words of Minimum Rank in Deterministic Finite Automata

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11647))

Included in the following conference series:

  • 408 Accesses

Abstract

The rank of a word in a deterministic finite automaton is the size of the image of the whole state set under the mapping defined by this word. We study the length of shortest words of minimum rank in several classes of complete deterministic finite automata, namely, strongly connected and Eulerian automata. A conjecture bounding this length is known as the Rank Conjecture, a generalization of the well known Černý Conjecture. We prove upper bounds on the length of shortest words of minimum rank in automata from the mentioned classes, and provide several families of automata with long words of minimum rank. Some results in this direction are also obtained for automata with rank equal to period (the greatest common divisor of lengths of all cycles) and for circular automata.

Jarkko Kari is supported by the Academy of Finland grant 296018. Anton Varonka is supported by Poland’s National Science Centre (NCN) grant no. 2016/21/D/ST6/00491.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almeida, J., Steinberg, B.: Matrix Mortality and the Černý-Pin Conjecture. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 67–80. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02737-6_5

    Chapter  Google Scholar 

  2. Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 55–65. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2_7

    Chapter  Google Scholar 

  3. Béal, M., Perrin, D.: A quadratic algorithm for road coloring. Discrete Appl. Math. 169, 15–29 (2014). https://doi.org/10.1016/j.dam.2013.12.002

    Article  MathSciNet  MATH  Google Scholar 

  4. Berlinkov, M.V.: On two algorithmic problems about synchronizing automata. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 61–67. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09698-8_6

    Chapter  Google Scholar 

  5. Berman, A., Plemmons, R.: Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1994)

    Book  Google Scholar 

  6. Carpi, A., D’Alessandro, F.: Strongly transitive automata and the černý conjecture. Acta Informatica 46(8), 591–607 (2009)

    Article  MathSciNet  Google Scholar 

  7. Carpi, A., D’Alessandro, F.: On the hybrid Černý-Road coloring problem and Hamiltonian paths. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 124–135. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14455-4_13

    Chapter  Google Scholar 

  8. Černý, J., Pirická, A., Rosenauerova, B.: On directable automata. Kybernetika 7(4), 289–298 (1971)

    MathSciNet  MATH  Google Scholar 

  9. Černý, J.: Pozńamka k homoǵennym eksperimentom s konečńymi automatami, Matematicko-fyzikalny Casopis Slovensk. Akad. Vied 14(3), 208–216 (1964)

    Google Scholar 

  10. Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in \(O(E \log D)\) time. Combinatorica 21(1), 5–12 (2001)

    Article  MathSciNet  Google Scholar 

  11. Dubuc, L.: Sur les automates circulaires et la conjecture de černý. RAIRO - Theor. Inform. Appl. 32(1–3), 21–34 (1998)

    Article  MathSciNet  Google Scholar 

  12. Gusev, V.V.: Lower bounds for the length of reset words in eulerian automata. Int. J. Found. Comput. Sci. 24(2), 251–262 (2013). https://doi.org/10.1142/S0129054113400108

    Article  MathSciNet  MATH  Google Scholar 

  13. Heap, B.R., Lynn, M.S.: The structure of powers of nonnegative matrices: I. The index of convergence. SIAM J. Appl. Math. 14(3), 610–639 (1966)

    Article  MathSciNet  Google Scholar 

  14. Kari, J.: A counter example to a conjecture concerning synchronizing words in finite automata. Bull. EATCS 73, 146 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theor. Comput. Sci. 295(1), 223–232 (2003)

    Article  MathSciNet  Google Scholar 

  16. Klyachko, A.A., Rystsov, I.K., Spivak, M.A.: In extremal combinatorial problem associated with the bound on the length of a synchronizing word in an automaton. Cybernetics 23(2), 165–171 (1987)

    Article  Google Scholar 

  17. Pin, J.: On two combinatorial problems arising from automata theory. In: Berge, C., Bresson, D., Camion, P., Maurras, J., Sterboul, F. (eds.) Combinatorial Mathematics, North-Holland Mathematics Studies, vol. 75, pp. 535–548. North-Holland, Amsterdam (1983)

    Google Scholar 

  18. Pin, J.E.: Le problème de la synchronisation et la conjecture de Cerný. In: Luca, A.D. (ed.) Non-commutative structures in algebra and geometric combinatorics, vol. 109, pp. 37–48. Quaderni de la Ricerca Scientifica, CNR (Consiglio nazionale delle ricerche, Italy) (1981)

    Google Scholar 

  19. Szykuła, M., Vorel, V.: An extremal series of Eulerian synchronizing automata. In: Brlek, S., Reutenauer, C. (eds.) DLT 2016. LNCS, vol. 9840, pp. 380–392. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53132-7_31

    Chapter  Google Scholar 

  20. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4_4

    Chapter  Google Scholar 

  21. Vorel, V.: Subset synchronization and careful synchronization of binary finite automata. Int. J. Found. Comput. Sci. 27(5), 557–577 (2016). https://doi.org/10.1142/S0129054116500167

    Article  MathSciNet  MATH  Google Scholar 

  22. Wielandt, H.: Unzerlegbare, nicht negative matrizen. Mathematische Zeitschrift 52(1), 642–648 (1950)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarkko Kari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kari, J., Ryzhikov, A., Varonka, A. (2019). Words of Minimum Rank in Deterministic Finite Automata. In: Hofman, P., Skrzypczak, M. (eds) Developments in Language Theory. DLT 2019. Lecture Notes in Computer Science(), vol 11647. Springer, Cham. https://doi.org/10.1007/978-3-030-24886-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24886-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24885-7

  • Online ISBN: 978-3-030-24886-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics