Skip to main content

Electroactive Materials

  • Chapter
  • First Online:
Book cover Metal Oxides/Chalcogenides and Composites

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 595 Accesses

Abstract

Both the HER and OER are the core reactions of advanced energy conversion technologies (Fuel cell, metal-air batteries, conversion of CO2 to fuel etc.) which are the key components of the sustainable energy utilization infrastructures. But experimentally these reactions face higher activation energy barrier and require additional potential called overpotential for their completion. In order to reduce the overpotential, numerous electrocatalyst and advanced techniques for electrode fabrication were developed. This chapter covers an up to date literature survey on different types of electroactive materials (precious metals, metal oxides, chalcogenides, phosphides, supported materials etc.) and electrodes employed for electrolysis purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrosi, A., Sofer, Z., & Pumera, M. (2015). Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2. Small, 11, 605–612.

    Article  CAS  Google Scholar 

  • Bau, J. A., Li, P., Marenco, A. J., Trudel, S., Olsen, B. C., Luber, E. J., & Buriak, J. M. (2014). Nickel/iron oxide nanocrystals with a nonequilibrium phase: Controlling size, shape, and composition. Chemistry of Materials, 26, 4796–4804.

    Article  CAS  Google Scholar 

  • Benck, J. D., Hellstern, T. R., Kibsgaard, J., Chakthranont, P., & Jaramillo, T. F. (2014). Catalyzing the Hydrogen Evolution Reaction (HER) with molybdenum sulfide nanomaterials. ACS Catalysis, 4, 3957–3971.

    Article  CAS  Google Scholar 

  • Bergmann, A., Martinez-Moreno, E., Teschner, D., Chernev, P., Gliech, M., de Araújo, J. F., Reier, T., Dau, H., & Strasser, P. (2015). Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nature Communications, 6, 8625.

    Article  CAS  Google Scholar 

  • Blanchard, P. E. R., Grosvenor, A. P., Cavell, R. G., & Mar, A. (2008). X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M2P and M3P (M = Cr-Ni). Chemistry of Materials, 20, 7081–7088.

    Article  CAS  Google Scholar 

  • Bonde, J., Moses, P. G., Jaramillo, T. F., Nørskov, J. K., & Chorkendorff, I. (2009). Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discussions, 140, 219–231.

    Article  Google Scholar 

  • Boppana, V. B. R., & Jiao, F. (2011). Nanostructured MnO2: An efficient and robust water oxidation catalyst. Chemical Communications, 47, 8973–8975.

    Article  CAS  Google Scholar 

  • Burgess, B. K., & Lowe, D. J. (2002). Mechanism of molybdenum nitrogenase. Chemical Reviews, 96, 2983–3012.

    Article  Google Scholar 

  • Callejas, J. F., McEnaney, J. M., Read, C. G., Crompton, J. C., Biacchi, A. J., Popczun, E. J., Gordon, T. R., Lewis, N. S., & Schaak, R. E. (2014). Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using Iron phosphide nanoparticles. ACS Nano, 8, 11101–11107.

    Article  CAS  Google Scholar 

  • Callejas, J. F., Read, C. G., Popczun, E. J., McEnaney, J. M., & Schaak, R. E. (2015). Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chemistry of Materials, 27, 3769–3774.

    Article  CAS  Google Scholar 

  • Chen, S., Duan, J., Jaroniec, M., & Qiao, S.-Z. (2014). Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Advanced Materials, 26, 2925–2930.

    Article  CAS  Google Scholar 

  • Chen, S., Duan, J., Jaroniec, M., & Qiao, S. Z. (2013a). Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angewandte Chemie International Edition, 52, 13567–13570.

    Article  CAS  Google Scholar 

  • Chen, S., Duan, J., Ran, J., Jaroniec, M., & Qiao, S. Z. (2013b). N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst. Energy & Environmental Science, 6, 3693–3699.

    Article  CAS  Google Scholar 

  • Chen, S., & Qiao, S. Z. (2013). Hierarchically porous nitrogen-doped graphene-NiCo2O4 hybrid paper as an advanced electrocatalytic water-splitting material. ACS Nano, 7, 10190–10196.

    Article  CAS  Google Scholar 

  • Chen, X., Yu, K., Shen, Y., Feng, Y., & Zhu, Z. (2017). Synergistic effect of MoS2 nanosheets and VS2 for the hydrogen evolution reaction with enhanced humidity-sensing performance. ACS Applied Materials & Interfaces, 9, 42139–42148.

    Article  CAS  Google Scholar 

  • Chen, Z., Cummins, D., Reinecke, B. N., Clark, E., Sunkara, M. K., & Jaramillo, T. F. (2011). Core–shell MoO3–MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Letters, 11, 4168–4175.

    Article  CAS  Google Scholar 

  • Chen, Z., Kronawitter, C. X., & Koel, B. E. (2015). Facet-dependent activity and stability of Co3O4 nanocrystals towards the oxygen evolution reaction. Physical Chemistry Chemical Physics, 17, 29387–29393.

    Article  CAS  Google Scholar 

  • Choi, C. L., Feng, J., Li, Y., Wu, J., Zak, A., Tenne, R., & Dai, H. (2013). WS2 nanoflakes from nanotubes for electrocatalysis. Nano Research, 6, 921–928.

    Article  CAS  Google Scholar 

  • Chung, D. Y., Han, J. W., Lim, D.-H., Jo, J.-H., Yoo, S. J., Lee, H., & Sung, Y.-E. (2015). Structure dependent active sites of NixSy as electrocatalysts for hydrogen evolution reaction. Nanoscale, 7, 5157–5163.

    Article  CAS  Google Scholar 

  • Chung, D. Y., Jun, S. W., Yoon, G., Kim, H., Yoo, J. M., Lee, K.-S., Kim, T., Shin, H., Sinha, A. K., Kwon, S. G., Kang, K., Hyeon, T., & Sung, Y.-E. (2017). Large-scale synthesis of carbon-shell-coated FeP nanoparticles for robust hydrogen evolution reaction electrocatalyst. Journal of the American Chemical Society, 139, 6669–6674.

    Article  CAS  Google Scholar 

  • Chung, D. Y., Park, S.-K., Chung, Y.-H., Yu, S.-H., Lim, D.-H., Jung, N., Ham, H. C., Park, H.-Y., Piao, Y., Yoo, S. J., & Sung, Y.-E. (2014). Edge-exposed MoS2 nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction. Nanoscale, 6, 2131–2136.

    Article  CAS  Google Scholar 

  • Das, J. K., Samantara, A. K., Nayak, A. K., Pradhan, D., & Behera, J. N. (2018). VS2: An efficient catalyst for an electrochemical hydrogen evolution reaction in an acidic medium. Dalton Transactions, 47, 13792–13799.

    Article  CAS  Google Scholar 

  • Di Giovanni, C., Wang, W.-A., Nowak, S., Grenèche, J.-M., Lecoq, H., Mouton, L., Giraud, M., & Tard, C. (2014). Bioinspired iron sulfide nanoparticles for cheap and long-lived electrocatalytic molecular hydrogen evolution in neutral water. ACS Catalysis, 4, 681–687.

    Article  CAS  Google Scholar 

  • Diaz-Morales, O., Raaijman, S., Kortlever, R., Kooyman, P. J., Wezendonk, T., Gascon, J., Fu, W. T., & Koper, M. T. M. (2016). Iridium-based double perovskites for efficient water oxidation in acid media. Nature Communications, 7, 12363.

    Article  CAS  Google Scholar 

  • Duan, J., Chen, S., Vasileff, A., & Qiao, S. Z. (2016). Anion and cation modulation in metal compounds for bifunctional overall water splitting. ACS Nano, 10, 8738–8745.

    Article  CAS  Google Scholar 

  • Dutta, A., Mutyala, S., Samantara, A. K., Bera, S., Jena, B. K., & Pradhan, N. (2018). Synergistic effect of inactive iron oxide core on active nickel phosphide shell for significant enhancement in oxygen evolution reaction activity. ACS Energy Letters, 3, 141–148.

    Article  CAS  Google Scholar 

  • Dutta, A., Samantara, A. K., Dutta, S. K., Jena, B. K., & Pradhan, N. (2016). Surface-oxidized dicobalt phosphide nanoneedles as a nonprecious, durable, and efficient OER catalyst. ACS Energy Letters, 1, 169–174.

    Article  CAS  Google Scholar 

  • Eady, R. R. (1996). Structure-function relationships of alternative nitrogenases. Chemical Reviews, 96, 3013–3030.

    Article  CAS  Google Scholar 

  • Eckenhoff, W. T., McNamara, W. R., Du, P., & Eisenberg, R. (2013). Cobalt complexes as artificial hydrogenases for the reductive side of water splitting. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1827, 958–973.

    Article  CAS  Google Scholar 

  • Ensafi, A. A., Jafari-Asl, M., Nabiyan, A., & Rezaei, B. (2016). Ni3S2/ball-milled silicon flour as a bi-functional electrocatalyst for hydrogen and oxygen evolution reactions. Energy, 116, 392–401.

    Article  CAS  Google Scholar 

  • Esposito, D. V., & Chen, J. G. (2011). Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: Opportunities and limitations. Energy & Environmental Science, 4, 3900–3912.

    Article  CAS  Google Scholar 

  • Esswein, A. J., McMurdo, M. J., Ross, P. N., Bell, A. T., & Tilley, T. D. (2009). Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. Journal of Physical Chemistry C, 113, 15068–15072.

    Article  CAS  Google Scholar 

  • Faber, M. S., Dziedzic, R., Lukowski, M. A., Kaiser, N. S., Ding, Q., & Jin, S. (2014a). High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. Journal of the American Chemical Society, 136, 10053–10061.

    Article  CAS  Google Scholar 

  • Faber, M. S., Lukowski, M. A., Ding, Q., Kaiser, N. S., & Jin, S. (2014b). Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction Electrocatalysis. Journal of Physical Chemistry C, 118, 21347–21356.

    Article  CAS  Google Scholar 

  • Feng, L.-L., Yu, G., Wu, Y., Li, G.-D., Li, H., Sun, Y., Asefa, T., Chen, W., & Zou, X. (2015). High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. Journal of the American Chemical Society, 137, 14023–14026.

    Article  CAS  Google Scholar 

  • Feng, Y., He, T., & Alonso-Vante, N. (2008). In situ free-surfactant synthesis and ORR- electrochemistry of carbon-supported Co3S4 and CoSe2 nanoparticles. Chemistry of Materials, 20, 26–28.

    Article  CAS  Google Scholar 

  • Gao, M., Sheng, W., Zhuang, Z., Fang, Q., Gu, S., Jiang, J., & Yan, Y. (2014). Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. Journal of the American Chemical Society, 136, 7077–7084.

    Article  CAS  Google Scholar 

  • Gilje, S., Kaner, R. B., Wallace, G. G., Li, D. A. N., & Mu, M. B. (2008). Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 3, 101–105.

    Article  CAS  Google Scholar 

  • Gong, M., Li, Y., Wang, H., Liang, Y., Wu, J. Z., Zhou, J., Wang, J., Regier, T., Wei, F., & Dai, H. (2013). An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. Journal of the American Chemical Society, 135, 8452–8455.

    Article  CAS  Google Scholar 

  • Gong, M., Zhou, W., Tsai, M.-C., Zhou, J., Guan, M., Lin, M.-C., Zhang, B., Hu, Y., Wang, D.-Y., Yang, J., Pennycook, S. J., Hwang, B.-J., & Dai, H. (2014). Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature Communications, 5, 4695.

    Article  CAS  Google Scholar 

  • Gopalakrishnan, D., Damien, D., & Shaijumon, M. M. (2014). MoS2 quantum dot-interspersed exfoliated MoS2 Nanosheets. ACS Nano, 8, 5297–5303.

    Article  CAS  Google Scholar 

  • Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I., & Nørskov, J. K. (2006). Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 5, 909–913.

    Article  CAS  Google Scholar 

  • Guo, C. X., Chen, S., & Lu, X. (2014). Ethylenediamine-mediated synthesis of Mn3O4 nano-octahedrons and their performance as electrocatalysts for the oxygen evolution reaction. Nanoscale, 6, 10896–10901.

    Article  CAS  Google Scholar 

  • Guo, Y., Tong, Y., Chen, P., Xu, K., Zhao, J., Lin, Y., Chu, W., Peng, Z., Wu, C., & Xie, Y. (2015). Engineering the electronic state of a Perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Advanced Materials, 27, 5989–5994.

    Article  CAS  Google Scholar 

  • Hallenbeck, P. C., & Benemann, J. R. (2002). Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy, 27, 1185–1193.

    Article  CAS  Google Scholar 

  • Hinnemann, B., Moses, P. G., Bonde, J., Jørgensen, K. P., Nielsen, J. H., Horch, S., Chorkendorff, I., & Nørskov, J. K. (2005). Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. Journal of the American Chemical Society, 127, 5308–5309.

    Article  CAS  Google Scholar 

  • Hirai, S., Yagi, S., Seno, A., Fujioka, M., Ohno, T., & Matsuda, T. (2016). Enhancement of the oxygen evolution reaction in Mn3+−based electrocatalysts: Correlation between Jahn–Teller distortion and catalytic activity. RSC Advances, 6, 2019–2023.

    Article  CAS  Google Scholar 

  • Hüppauff, M. (1993). Valency and structure of iridium in anodic iridium oxide films. Journal of the Electrochemical Society, 140, 598.

    Article  Google Scholar 

  • Hutchings, R., Müller, K., Kötz, R., & Stucki, S. (1984). A structural investigation of stabilized oxygen evolution catalysts. Journal of Materials Science, 19, 3987–3994.

    Article  CAS  Google Scholar 

  • Huynh, M., Shi, C., Billinge, S. J. L., & Nocera, D. G. (2015). Nature of activated manganese oxide for oxygen evolution. Journal of the American Chemical Society, 137, 14887–14904.

    Article  CAS  Google Scholar 

  • Jaramillo, T. F., Jørgensen, K. P., Bonde, J., Nielsen, J. H., Horch, S., & Chorkendorff, I. (2007). Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science (80-. ), 317, 100–102.

    Article  CAS  Google Scholar 

  • Jiang, J., Wang, C., Zhang, J., Wang, W., Zhou, X., Pan, B., Tang, K., Zuo, J., & Yang, Q. (2015). Synthesis of FeP2/C nanohybrids and their performance for hydrogen evolution reaction. Journal of Materials Chemistry A, 3, 499–503.

    Article  CAS  Google Scholar 

  • Jiang, N., Bogoev, L., Popova, M., Gul, S., Yano, J., & Sun, Y. (2014). Electrodeposited nickel-sulfide films as competent hydrogen evolution catalysts in neutral water. Journal of Materials Chemistry A, 2, 19407–19414.

    Article  CAS  Google Scholar 

  • Jiang, P., Liu, Q., Ge, C., Cui, W., Pu, Z., Asiri, A. M., & Sun, X. (2014a). CoP nanostructures with different morphologies: Synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. Journal of Materials Chemistry A, 2, 14634–14640.

    Article  CAS  Google Scholar 

  • Jiang, P., Liu, Q., Liang, Y., Tian, J., Asiri, A. M., & Sun, X. (2014b). A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angewandte Chemie, 126, 13069–13073.

    Article  Google Scholar 

  • Jiang, P., Liu, Q., & Sun, X. (2014c). NiP2 nanosheet arrays supported on carbon cloth: An efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale, 6, 13440–13445.

    Article  CAS  Google Scholar 

  • Jing, S., Lu, J., Yu, G., Yin, S., Luo, L., Zhang, Z., Ma, Y., Chen, W., & Shen, P. K. (2018). Carbon-encapsulated WOx hybrids as efficient catalysts for hydrogen evolution. Advanced Materials, 30, 1705979.

    Article  CAS  Google Scholar 

  • Kelly, T. G., & Chen, J. G. (2012). Metal overlayer on metal carbide substrate: Unique bimetallic properties for catalysis and electrocatalysis. Chemical Society Reviews, 41, 8021–8034.

    Article  CAS  Google Scholar 

  • Kibler, L. A., El-Aziz, A. M., Hoyer, R., & Kolb, D. M. (2005). Tuning reaction rates by lateral strain in a palladium monolayer. Angewandte Chemie International Edition, 44, 2080–2084.

    Article  CAS  Google Scholar 

  • Kibsgaard, J., Chen, Z., Reinecke, B. N., & Jaramillo, T. F. (2012). Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Materials, 11, 963.

    Article  CAS  Google Scholar 

  • Kibsgaard, J., Tsai, C., Chan, K., Benck, J. D., Nørskov, J. K., Abild-Pedersen, F., & Jaramillo, T. F. (2015). Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy & Environmental Science, 8, 3022–3029.

    Article  CAS  Google Scholar 

  • Kim, J., Kim, J. S., Baik, H., Kang, K., & Lee, K. (2016). Porous β-MnO2 nanoplates derived from MnCO3 nanoplates as highly efficient electrocatalysts toward oxygen evolution reaction. RSC Advances, 6, 26535–26539.

    Article  CAS  Google Scholar 

  • Kim, N. -I., Sa, Y. J., Cho, S. -H., So, I., Kwon, K., Joo, S. H., & Park, J. -Y. (2016). Enhancing activity and stability of cobalt oxide electrocatalysts for the oxygen evolution reaction via transition metal doping. Journal of the Electrochemical Society, 163, F3020–F3028.

    Google Scholar 

  • Kitchin, J. R., Nørskov, J. K., Barteau, M. A., & Chen, J. G. (2004). Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Physical Review Letters, 93, 156801.

    Article  CAS  Google Scholar 

  • Kong, D., Cha, J. J., Wang, H., Lee, H. R., & Cui, Y. (2013a). First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy & Environmental Science, 6, 3553–3558.

    Article  CAS  Google Scholar 

  • Kong, D., Wang, H., Cha, J. J., Pasta, M., Koski, K. J., Yao, J., & Cui, Y. (2013b). Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Letters, 13, 1341–1347.

    Article  CAS  Google Scholar 

  • Kong, D., Wang, H., Lu, Z., & Cui, Y. (2014). CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. Journal of the American Chemical Society, 136, 4897–4900.

    Article  CAS  Google Scholar 

  • Kötz, R., & Stucki, S. (1985). Oxygen evolution and corrosion on ruthenium-iridium alloys. Journal of the Electrochemical Society, 132, 103–107.

    Article  Google Scholar 

  • Kreysa, G., Ota, K.-I., & Savinell, R. F. (2014). Encyclopedia of applied electrochemistry. New York: Springer.

    Book  Google Scholar 

  • Kuo, C.-H., Li, W., Pahalagedara, L., El-Sawy, A. M., Kriz, D., Genz, N., Guild, C., Ressler, T., Suib, S. L., & He, J. (2015). Understanding the role of gold nanoparticles in enhancing the catalytic activity of manganese oxides in water oxidation reactions. Angewandte Chemie International Edition, 54, 2345–2350.

    Article  CAS  Google Scholar 

  • Laursen, A. B., Patraju, K. R., Whitaker, M. J., Retuerto, M., Sarkar, T., Yao, N., Ramanujachary, K. V., Greenblatt, M., & Dismukes, G. C. (2015). Nanocrystalline Ni5P4: A hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy & Environmental Science, 8, 1027–1034.

    Article  CAS  Google Scholar 

  • Laursen, A. B., Wexler, R. B., Whitaker, M. J., Izett, E. J., Calvinho, K. U. D., Hwang, S., Rucker, R., Wang, H., Li, J., Garfunkel, E., Greenblatt, M., Rappe, A. M., & Dismukes, G. C. (2018). Climbing the volcano of electrocatalytic activity while avoiding catalyst corrosion: Ni3P, a hydrogen evolution electrocatalyst stable in both acid and alkali. ACS Catalysis, 8, 4408–4419.

    Article  CAS  Google Scholar 

  • Lee, D. U., Choi, J.-Y., Feng, K., Park, H. W., & Chen, Z. (2014). Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air batteries. Advanced Energy Materials, 4, 1301389.

    Article  CAS  Google Scholar 

  • Lee, Y., Suntivich, J., May, K. J., Perry, E. E., & Shao-Horn, Y. (2012). Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. Journal of Physical Chemistry Letters, 3, 399–404.

    Article  CAS  Google Scholar 

  • Leng, X., Zeng, Q., Wu, K.-H., Gentle, I. R., & Wang, D.-W. (2015). Reduction-induced surface amorphization enhances the oxygen evolution activity in Co3O4. RSC Advances, 5, 27823–27828.

    Article  CAS  Google Scholar 

  • Li, D., Baydoun, H., Verani, C. N., & Brock, S. L. (2016). Efficient water oxidation using CoMnP nanoparticles. Journal of the American Chemical Society, 138, 4006–4009.

    Article  CAS  Google Scholar 

  • Li, M., Xiong, Y., Liu, X., Bo, X., Zhang, Y., Han, C., & Guo, L. (2015). Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale, 7, 8920–8930.

    Google Scholar 

  • Li, S., Wang, Y., Peng, S., Zhang, L., Al-Enizi, A. M., Zhang, H., Sun, X., & Zheng, G. (2016). Co–Ni-based nanotubes/Nanosheets as efficient water splitting Electrocatalysts. Advanced Energy Materials, 6, 1501661.

    Google Scholar 

  • Li, Y., Zhang, H., Jiang, M., Kuang, Y., Sun, X., & Duan, X. (2016). Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Research, 9, 2251–2259.

    Google Scholar 

  • Li, Y. H., Liu, P. F., Pan, L. F., Wang, H. F., Yang, Z. Z., Zheng, L. R., Hu, P., Zhao, H. J., Gu, L., & Yang, H. G. (2015). Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nature Communications, 6, 8064.

    Article  CAS  Google Scholar 

  • Liang, H., Shi, H., Zhang, D., Ming, F., Wang, R., Zhuo, J., & Wang, Z. (2016). Solution growth of vertical VS2 nanoplate arrays for electrocatalytic hydrogen evolution. Chemistry of Materials, 28, 5587–5591.

    Article  CAS  Google Scholar 

  • Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., & Dai, H. (2011). Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials, 10, 780.

    Article  CAS  Google Scholar 

  • Liao, J.-Y., Higgins, D., Lui, G., Chabot, V., Xiao, X., & Chen, Z. (2013). Multifunctional TiO2–C/MnO2 Core–double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Letters, 13, 5467–5473.

    Article  CAS  Google Scholar 

  • Lin, C.-H., Chen, C.-L., & Wang, J.-H. (2011). Mechanistic studies of water–gas-shift reaction on transition metals. Journal of Physical Chemistry C, 115, 18582–18588.

    Article  CAS  Google Scholar 

  • Liu, P., & Rodriguez, J. A. (2005). Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: The importance of ensemble effect. Journal of the American Chemical Society, 127, 14871–14878.

    Article  CAS  Google Scholar 

  • Liu, Q., Tian, J., Cui, W., Jiang, P., Cheng, N., Asiri, A. M., & Sun, X. (2014). Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angewandte Chemie International Edition, 53, 6710–6714.

    Article  CAS  Google Scholar 

  • Liu, T., Liang, Y., Liu, Q., Sun, X., He, Y., & Asiri, A. M. (2015). Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction. Electrochemistry Communications, 60, 92–96.

    Article  CAS  Google Scholar 

  • Liu, W., Hu, E., Jiang, H., Xiang, Y., Weng, Z., Li, M., Fan, Q., Yu, X., Altman, E. I., & Wang, H. (2016). A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nature Communications, 7, 10771.

    Article  CAS  Google Scholar 

  • Liu, X., Cui, S., Qian, M., Sun, Z., & Du, P. (2016). In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions. Chemical Communications, 52, 5546–5549.

    Google Scholar 

  • Liu, Y., Cheng, H., Lyu, M., Fan, S., Liu, Q., Zhang, W., Zhi, Y., Wang, C., Xiao, C., Wei, S., Ye, B., & Xie, Y. (2014). Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. Journal of the American Chemical Society, 136, 15670–15675.

    Google Scholar 

  • Lu, B., Cao, D., Wang, P., Wang, G., & Gao, Y. (2011). Oxygen evolution reaction on Ni-substituted Co3O4 nanowire array electrodes. International Journal of Hydrogen Energy, 36, 72–78.

    Article  CAS  Google Scholar 

  • Lu, Z., Zhang, H., Zhu, W., Yu, X., Kuang, Y., Chang, Z., Lei, X., & Sun, X. (2013). In situ fabrication of porous MoS2 thin-films as high-performance catalysts for electrochemical hydrogen evolution. Chemical Communications, 49, 7516–7518.

    Article  CAS  Google Scholar 

  • Lu, Z., Zhu, W., Yu, X., Zhang, H., Li, Y., Sun, X., Wang, X., Wang, H., Wang, J., Luo, J., Lei, X., & Jiang, L. (2014b). Ultrahigh hydrogen evolution performance of under-water “Superaerophobic” MoS2 nanostructured electrodes. Advanced Materials, 26, 2683–2687.

    Article  CAS  Google Scholar 

  • Lukowski, M. A., Daniel, A. S., Meng, F., Forticaux, A., Li, L., & Jin, S. (2013). Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. Journal of the American Chemical Society, 135, 10274–10277.

    Article  CAS  Google Scholar 

  • Lv, X.-J., She, G.-W., Zhou, S.-X., & Li, Y.-M. (2013). Highly efficient electrocatalytic hydrogen production by nickel promoted molybdenum sulfide microspheres catalysts. RSC Advances, 3, 21231–21236.

    Article  CAS  Google Scholar 

  • Ma, T. Y., Dai, S., & Qiao, S. Z. (2016). Self-supported electrocatalysts for advanced energy conversion processes. Materials Today, 19, 265–273.

    Article  CAS  Google Scholar 

  • Ma, T. Y., Ran, J., Dai, S., Jaroniec, M., & Qiao, S. Z. (2015). Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes. Angewandte Chemie International Edition, 54, 4646–4650.

    Article  CAS  Google Scholar 

  • Mamaca, N., Mayousse, E., Arrii-Clacens, S., Napporn, T. W., Servat, K., Guillet, N., & Kokoh, K. B. (2012). Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction. Applied Catalysis B: Environmental, 111–112, 376–380.

    Article  CAS  Google Scholar 

  • Man, I. C., Su, H.-Y., Calle-Vallejo, F., Hansen, H. A., Martínez, J. I., Inoglu, N. G., Kitchin, J., Jaramillo, T. F., Nørskov, J. K., & Rossmeisl, J. (2011). Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 3, 1159–1165.

    Article  CAS  Google Scholar 

  • McEnaney, J. M., Chance Crompton, J., Callejas, J. F., Popczun, E. J., Read, C. G., Lewis, N. S., & Schaak, R. E. (2014). Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles. Chemical Communications, 50, 11026–11028.

    Article  CAS  Google Scholar 

  • McPherson, I. J., & Vincent, K. A. (2014). Electrocatalysis by hydrogenases: Lessons for building bio-inspired devices. Journal of the Brazilian Chemical Society, 25, 427–441.

    CAS  Google Scholar 

  • Mendoza-Garcia, A., Zhu, H., Yu, Y., Li, Q., Zhou, L., Su, D., Kramer, M. J., & Sun, S. (2015). Controlled anisotropic growth of Co-Fe-P from Co-Fe-O nanoparticles. Angewandte Chemie International Edition, 54, 9642–9645.

    Article  CAS  Google Scholar 

  • Merki, D., Vrubel, H., Rovelli, L., Fierro, S., & Hu, X. (2012). Fe, co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chemical Science, 3, 2515–2525.

    Article  CAS  Google Scholar 

  • Mom, R. V., Cheng, J., Koper, M. T. M., & Sprik, M. (2014). Modeling the oxygen evolution reaction on metal oxides: The Infuence of unrestricted DFT calculations. Journal of Physical Chemistry C, 118, 4095–4102.

    Article  CAS  Google Scholar 

  • Muthuswamy, E., Kharel, P. R., Lawes, G., & Brock, S. L. (2009). Control of phase in phosphide nanoparticles produced by metal nanoparticle transformation: Fe2P and FeP. ACS Nano, 3, 2383–2393.

    Article  CAS  Google Scholar 

  • Nahor, G. S., Hapiot, P., Neta, P., & Harriman, A. (1991). Changes in the redox state of iridium oxide clusters and their relation to catalytic water oxidation: Radiolytic and electrochemical studies. The Journal of Physical Chemistry, 95, 616–621.

    Article  CAS  Google Scholar 

  • Neyerlin, K. C., Bugosh, G., Forgie, R., Liu, Z., & Strasser, P. (2009). Combinatorial study of high-surface-area binary and ternary electrocatalysts for the oxygen evolution reaction. Journal of the Electrochemical Society, 156, B363–B369.

    Article  CAS  Google Scholar 

  • Ouyang, C., Wang, X., Wang, C., Zhang, X., Wu, J., Ma, Z., Dou, S., & Wang, S. (2015). Hierarchically porous Ni3S2 nanorod array foam as highly efficient electrocatalyst for hydrogen evolution reaction and oxygen evolution reaction. Electrochimica Acta, 174, 297–301.

    Article  CAS  Google Scholar 

  • Over, H. (2012). Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: From fundamental to applied research. Chemical Reviews, 112, 3356–3426.

    Article  CAS  Google Scholar 

  • Pan, Y., Liu, Y., Zhao, J., Yang, K., Liang, J., Liu, D., Hu, W., Liu, D., Liu, Y., & Liu, C. (2015). Monodispersed nickel phosphide nanocrystals with different phases: Synthesis, characterization and electrocatalytic properties for hydrogen evolution. Journal of Materials Chemistry A, 3, 1656–1665.

    Article  CAS  Google Scholar 

  • Pei, J., Mao, J., Liang, X., Chen, C., Peng, Q., Wang, D., & Li, Y. (2016). Ir–Cu nanoframes: One-pot synthesis and efficient electrocatalysts for oxygen evolution reaction. Chemical Communications, 52, 3793–3796.

    Article  CAS  Google Scholar 

  • Pi, M., Wu, T., Zhang, D., Chen, S., & Wang, S. (2016). Self-supported three-dimensional mesoporous semimetallic WP2 nanowire arrays on carbon cloth as a flexible cathode for efficient hydrogen evolution. Nanoscale, 8, 19779–19786.

    Article  CAS  Google Scholar 

  • Plaisance, C. P., Reuter, K., & van Santen, R. A. (2016). Quantum chemistry of the oxygen evolution reaction on cobalt(ii,iii) oxide – implications for designing the optimal catalyst. Faraday Discussions, 188, 199–226.

    Article  CAS  Google Scholar 

  • Popczun, E. J., McKone, J. R., Read, C. G., Biacchi, A. J., Wiltrout, A. M., Lewis, N. S., & Schaak, R. E. (2013). Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 135, 9267–9270.

    Article  CAS  Google Scholar 

  • Popczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S., & Schaak, R. E. (2014). Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angewandte Chemie International Edition, 53, 5427–5430.

    Article  CAS  Google Scholar 

  • Pu, Z., Liu, Q., Asiri, A. M., Obaid, A. Y., & Sun, X. (2014a). One-step electrodeposition fabrication of graphene film-confined WS2 nanoparticles with enhanced electrochemical catalytic activity for hydrogen evolution. Electrochimica Acta, 134, 8–12.

    Article  CAS  Google Scholar 

  • Pu, Z., Liu, Q., Asiri, A. M., & Sun, X. (2014b). Tungsten phosphide nanorod arrays directly grown on carbon cloth: A highly efficient and stable hydrogen evolution cathode at all pH values. ACS Applied Materials & Interfaces, 6, 21874–21879.

    Article  CAS  Google Scholar 

  • Pu, Z., Ya, X., Amiinu, I. S., Tu, Z., Liu, X., Li, W., & Mu, S. (2016). Ultrasmall tungsten phosphide nanoparticles embedded in nitrogen-doped carbon as a highly active and stable hydrogen-evolution electrocatalyst. Journal of Materials Chemistry A, 4, 15327–15332.

    Article  CAS  Google Scholar 

  • Qiu, Y., Xin, L., & Li, W. (2014). Electrocatalytic oxygen evolution over supported small amorphous Ni–Fe nanoparticles in alkaline electrolyte. Langmuir, 30, 7893–7901.

    Article  CAS  Google Scholar 

  • Rao, Y., Zhang, L.-M., Shang, X., Dong, B., Liu, Y.-R., Lu, S.-S., Chi, J.-Q., Chai, Y.-M., & Liu, C.-G. (2017). Vanadium sulfides interwoven nanoflowers based on in-situ sulfurization of vanadium oxides octahedron on nickel foam for efficient hydrogen evolution. Applied Surface Science, 423, 1090–1096.

    Article  CAS  Google Scholar 

  • Ratha, S., Samantara, A. K., Singha, K. K., Gangan, A. S., Chakraborty, B., Jena, B. K., & Rout, C. S. (2017). Urea-assisted room temperature stabilized metastable β-NiMoO4: Experimental and theoretical insights into its unique Bifunctional activity toward oxygen evolution and Supercapacitor. ACS Applied Materials & Interfaces, 9, 9640–9653.

    Article  CAS  Google Scholar 

  • Ryu, J., Jung, N., Jang, J. H., Kim, H.-J., & Yoo, S. J. (2015). In situ transformation of hydrogen-evolving CoP nanoparticles: Toward efficient oxygen evolution catalysts bearing dispersed morphologies with Co-oxo/hydroxo molecular units. ACS Catalysis, 5, 4066–4074.

    Article  CAS  Google Scholar 

  • Samantara, A. K., Kamila, S., Ghosh, A., & Jena, B. K. (2018). Highly ordered 1D NiCo2O4 nanorods on graphene: An efficient dual-functional hybrid materials for electrochemical energy conversion and storage applications. Electrochimica Acta, 263, 147–157.

    Article  CAS  Google Scholar 

  • Sanchez Casalongue, H. G., Ng, M. L., Kaya, S., Friebel, D., Ogasawara, H., & Nilsson, A. (2014). In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angewandte Chemie International Edition, 53, 7169–7172.

    Google Scholar 

  • Sardar, K., Petrucco, E., Hiley, C. I., Sharman, J. D. B., Wells, P. P., Russell, A. E., Kashtiban, R. J., Sloan, J., & Walton, R. I. (2014). Water-splitting electrocatalysis in acid conditions using Ruthenate-Iridate Pyrochlores. Angewandte Chemie International Edition, 53, 10960–10964.

    Article  CAS  Google Scholar 

  • Schipper, D. E., Zhao, Z., Thirumalai, H., Leitner, A. P., Donaldson, S. L., Kumar, A., Qin, F., Wang, Z., Grabow, L. C., Bao, J., & Whitmire, K. H. (2018). Effects of catalyst phase on the hydrogen evolution reaction of water splitting: Preparation of phase-pure films of FeP, Fe2P, and Fe3P and their relative catalytic activities. Chemistry of Materials, 30, 3588–3598.

    Article  CAS  Google Scholar 

  • Seo, B., Baek, D. S., Sa, Y. J., & Joo, S. H. (2016). Shape effects of nickel phosphide nanocrystals on hydrogen evolution reaction. CrystEngComm, 18, 6083–6089.

    Article  CAS  Google Scholar 

  • Shen, M., Ruan, C., Chen, Y., Jiang, C., Ai, K., & Lu, L. (2015). Covalent entrapment of cobalt–iron sulfides in N-doped Mesoporous carbon: Extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Applied Materials & Interfaces, 7, 1207–1218.

    Article  CAS  Google Scholar 

  • Smith, R. D. L., Prévot, M. S., Fagan, R. D., Trudel, S., & Berlinguette, C. P. (2013). Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing Iron, cobalt, and nickel. Journal of the American Chemical Society, 135, 11580–11586.

    Article  CAS  Google Scholar 

  • Song, F., & Hu, X. (2014). Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nature Communications, 5, 4477.

    Article  CAS  Google Scholar 

  • Song, F., Schenk, K., & Hu, X. (2016). A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6 nanocubes. Energy & Environmental Science, 9, 473–477.

    Article  CAS  Google Scholar 

  • Subbaraman, R., Tripkovic, D., Chang, K.-C., Strmcnik, D., Paulikas, A. P., Hirunsit, P., Chan, M., Greeley, J., Stamenkovic, V., & Markovic, N. M. (2012). Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nature Materials, 11, 550.

    Article  CAS  Google Scholar 

  • Sun, X., Dai, J., Guo, Y., Wu, C., Hu, F., Zhao, J., Zeng, X., & Xie, Y. (2014). Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale, 6, 8359–8367.

    Article  CAS  Google Scholar 

  • Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B., & Shao-Horn, Y. (2011). A Perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science (80-. ), 334, 1383 LP–1385.

    Article  CAS  Google Scholar 

  • Tang, C., Gan, L., Zhang, R., Lu, W., Jiang, X., Asiri, A. M., Sun, X., Wang, J., & Chen, L. (2016). Ternary FexCo1–xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: Experimental and theoretical insight. Nano Letters, 16, 6617–6621.

    Article  CAS  Google Scholar 

  • Tang, R., Nie, Y., Kawasaki, J. K., Kuo, D. -Y., Petretto, G., Hautier, G., Rignanese, G. -M., Shen, K. M., Schlom, D. G., & Suntivich, J. (2016). Oxygen evolution reaction electrocatalysis on SrIrO3 grown using molecular beam epitaxy. Journal of Materials Chemistry A, 4, 6831–6836.

    Google Scholar 

  • Tian, J., Liu, Q., Asiri, A. M., & Sun, X. (2014a). Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. Journal of the American Chemical Society, 136, 7587–7590.

    Article  CAS  Google Scholar 

  • Tian, J., Liu, Q., Cheng, N., Asiri, A. M., & Sun, X. (2014b). Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angewandte Chemie, 126, 9731–9735.

    Article  Google Scholar 

  • Tran, P. D., Chiam, S. Y., Boix, P. P., Ren, Y., Pramana, S. S., Fize, J., Artero, V., & Barber, J. (2013). Novel cobalt/nickel–tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water. Energy & Environmental Science, 6, 2452–2459.

    Article  CAS  Google Scholar 

  • Trasatti, S. (1984). Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochimica Acta, 29, 1503–1512.

    Article  CAS  Google Scholar 

  • Trotochaud, L., Ranney, J. K., Williams, K. N., & Boettcher, S. W. (2012). Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. Journal of the American Chemical Society, 134, 17253–17261.

    Article  CAS  Google Scholar 

  • Vasić Anićijević, D. D., Nikolić, V. M., Marčeta-Kaninski, M. P., & Pašti, I. A. (2013). Is platinum necessary for efficient hydrogen evolution? – DFT study of metal monolayers on tungsten carbide. International Journal of Hydrogen Energy, 38, 16071–16079.

    Article  CAS  Google Scholar 

  • Voiry, D., Salehi, M., Silva, R., Fujita, T., Chen, M., Asefa, T., Shenoy, V. B., Eda, G., & Chhowalla, M. (2013a). Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Letters, 13, 6222–6227.

    Article  CAS  Google Scholar 

  • Voiry, D., Yamaguchi, H., Li, J., Silva, R., Alves, D. C. B., Fujita, T., Chen, M., Asefa, T., Shenoy, V. B., Eda, G., & Chhowalla, M. (2013b). Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials, 12, 850.

    Article  CAS  Google Scholar 

  • Wang, D., Pan, Z., Wu, Z., Wang, Z., & Liu, Z. (2014). Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts. Journal of Power Sources, 264, 229–234.

    Google Scholar 

  • Wang, D., Wang, Z., Wang, C., Zhou, P., Wu, Z., & Liu, Z. (2013). Distorted MoS2 nanostructures: An efficient catalyst for the electrochemical hydrogen evolution reaction. Electrochemistry Communications, 34, 219–222.

    Google Scholar 

  • Wang, H., Kong, D., Johanes, P., Cha, J. J., Zheng, G., Yan, K., Liu, N., & Cui, Y. (2013). MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Letters, 13, 3426–3433.

    Article  CAS  Google Scholar 

  • Wang, H., Lee, H. -W., Deng, Y., Lu, Z., Hsu, P. -C., Liu, Y., Lin, D., & Cui, Y. (2015). Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nature Communications, 6, 7261.

    Google Scholar 

  • Wang, R., Dong, X.-Y., Du, J., Zhao, J.-Y., & Zang, S.-Q. (2018). MOF-derived bifunctional Cu3P nanoparticles coated by a N,P-codoped carbon shell for hydrogen evolution and oxygen reduction. Advanced Materials, 30, 1703711.

    Article  CAS  Google Scholar 

  • Wang, X., Kolen’ko, Y. V., Bao, X.-Q., Kovnir, K., & Liu, L. (2015). One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angewandte Chemie, 127, 8306–8310.

    Article  Google Scholar 

  • Wang, Y., Zhou, T., Jiang, K., Da, P., Peng, Z., Tang, J., Kong, B., Cai, W. -B., Yang, Z., & Zheng, G. (2014). Electrocatalysis: Reduced Mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes (Adv. Energy Mater. 16/2014). Advanced Energy Materials, 4: 1400696.

    Google Scholar 

  • Wu, T., Pi, M., Wang, X., Guo, W., Zhang, D., & Chen, S. (2017a). Developing bifunctional electrocatalyst for overall water splitting using three-dimensional porous CoP3 nanospheres integrated on carbon cloth. Journal of Alloys and Compounds, 729, 203–209.

    Article  CAS  Google Scholar 

  • Wu, T., Pi, M., Wang, X., Zhang, D., & Chen, S. (2017b). Three-dimensional metal–organic framework derived porous CoP3 concave polyhedrons as superior bifunctional electrocatalysts for the evolution of hydrogen and oxygen. Physical Chemistry Chemical Physics, 19, 2104–2110.

    Article  CAS  Google Scholar 

  • Wu, X., & Scott, K. (2013). A Li-doped Co3O4 oxygen evolution catalyst for non-precious metal alkaline anion exchange membrane water electrolysers. International Journal of Hydrogen Energy, 38, 3123–3129.

    Article  CAS  Google Scholar 

  • Wu, Z., Fang, B., Wang, Z., Wang, C., Liu, Z., Liu, F., Wang, W., Alfantazi, A., Wang, D., & Wilkinson, D. P. (2013). MoS2 nanosheets: A designed structure with high active site density for the hydrogen evolution reaction. ACS Catalysis, 3, 2101–2107.

    Article  CAS  Google Scholar 

  • Xia, X., Figueroa-Cosme, L., Tao, J., Peng, H.-C., Niu, G., Zhu, Y., & Xia, Y. (2014). Facile synthesis of iridium nanocrystals with well-controlled facets using seed-mediated growth. Journal of the American Chemical Society, 136, 10878–10881.

    Article  CAS  Google Scholar 

  • Xiao, P., Sk, M. A., Thia, L., Ge, X., Lim, R. J., Wang, J.-Y., Lim, K. H., & Wang, X. (2014). Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy & Environmental Science, 7, 2624–2629.

    Article  CAS  Google Scholar 

  • Xie, J., Zhang, J., Li, S., Grote, F., Zhang, X., Zhang, H., Wang, R., Lei, Y., Pan, B., & Xie, Y. (2013). Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin Nanosheets for efficient hydrogen evolution. Journal of the American Chemical Society, 135, 17881–17888.

    Article  CAS  Google Scholar 

  • Xing, Z., Liu, Q., Asiri, A. M., & Sun, X. (2014). Closely interconnected network of molybdenum phosphide nanoparticles: A highly efficient Electrocatalyst for generating hydrogen from water. Advanced Materials, 26, 5702–5707.

    Article  CAS  Google Scholar 

  • Xing, Z., Liu, Q., Asiri, A. M., & Sun, X. (2015). High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catalysis, 5, 145–149.

    Article  CAS  Google Scholar 

  • Yan, X., Tian, L., He, M., & Chen, X. (2015). Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient Electrocatalysts for the hydrogen evolution reaction. Nano Letters, 15, 6015–6021.

    Article  CAS  Google Scholar 

  • Yang, H., Zhang, Y., Hu, F., & Wang, Q. (2015). Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Letters, 15, 7616–7620.

    Article  CAS  Google Scholar 

  • Yang, J., Voiry, D., Ahn, S. J., Kang, D., Kim, A. Y., Chhowalla, M., & Shin, H. S. (2013). Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angewandte Chemie International Edition, 52, 13751–13754.

    Article  CAS  Google Scholar 

  • Yang, J., Zhang, F., Wang, X., He, D., Wu, G., Yang, Q., Hong, X., Wu, Y., & Li, Y. (2016). Porous molybdenum phosphide Nano-Octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angewandte Chemie International Edition, 55, 12854–12858.

    Article  CAS  Google Scholar 

  • Yang, J., Zhu, G., Liu, Y., Xia, J., Ji, Z., Shen, X., & Wu, S. (2016). Fe3O4-decorated Co9S8 nanoparticles in situ grown on reduced graphene oxide: A new and efficient electrocatalyst for oxygen evolution reaction. Advanced Functional Materials, 26, 4712–4721.

    Article  CAS  Google Scholar 

  • Yang, Y., Fei, H., Ruan, G., Xiang, C., & Tour, J. M. (2014). Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Advanced Materials, 26, 8163–8168.

    Article  CAS  Google Scholar 

  • Ye, R., del Angel-Vicente, P., Liu, Y., Arellano-Jimenez, M. J., Peng, Z., Wang, T., Li, Y., Yakobson, B. I., Wei, S.-H., Yacaman, M. J., & Tour, J. M. (2016). High-performance hydrogen evolution from MoS2(1–x)P x solid solution. Advanced Materials, 28, 1427–1432.

    Article  CAS  Google Scholar 

  • Yeo, R. S., Orehotsky, J., Visscher, W., & Srinivasan, S. (1981). Ruthenium-based mixed oxides as electrocatalysts for oxygen evolution in acid electrolytes. Journal of the Electrochemical Society, 128, 1900–1904.

    Article  CAS  Google Scholar 

  • Yu, Y., Huang, S.-Y., Li, Y., Steinmann, S. N., Yang, W., & Cao, L. (2014). Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Letters, 14, 553–558.

    Article  CAS  Google Scholar 

  • Yuan, L., Yan, Z., Jiang, L., Wang, E., Wang, S., & Sun, G. (2016). Gold-iridium bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Journal of Energy Chemistry, 25, 805–810.

    Article  Google Scholar 

  • Zhang, C., Huang, Y., Yu, Y., Zhang, J., Zhuo, S., & Zhang, B. (2017). Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: A high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chemical Science, 8, 2769–2775.

    Article  CAS  Google Scholar 

  • Zhang, K., Kim, H.-J., Lee, J.-T., Chang, G.-W., Shi, X., Kim, W., Ma, M., Kong, K., Choi, J.-M., Song, M.-S., & Park, J. H. (2014). Unconventional pore and defect generation in molybdenum disulfide: Application in high-rate lithium-ion batteries and the hydrogen evolution reaction. ChemSusChem, 7, 2489–2495.

    Article  CAS  Google Scholar 

  • Zhang, L., Wu, H. B., Yan, Y., Wang, X., & Lou, X. W. (David). (2014). Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy & Environmental Science, 7, 3302–3306.

    Google Scholar 

  • Zhang, T., Wu, M.-Y., Yan, D.-Y., Mao, J., Liu, H., Hu, W.-B., Du, X.-W., Ling, T., & Qiao, S.-Z. (2018). Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy, 43, 103–109.

    Article  CAS  Google Scholar 

  • Zhang, X., Yu, X., Zhang, L., Zhou, F., Liang, Y., & Wang, R. (2018). Molybdenum phosphide/carbon nanotube hybrids as pH-universal electrocatalysts for hydrogen evolution reaction. Advanced Functional Materials, 28, 1706523.

    Google Scholar 

  • Zhang, Y., Ding, F., Deng, C., Zhen, S., Li, X., Xue, Y., Yan, Y. M., & Sun, K. (2015). Crystal plane-dependent electrocatalytic activity of Co3O4 toward oxygen evolution reaction. Catalysis Communications, 67, 78–82.

    Google Scholar 

  • Zheng, T., Sang, W., He, Z., Wei, Q., Chen, B., Li, H., Cao, C., Huang, R., Yan, X., Pan, B., Zhou, S., & Zeng, J. (2017). Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution. Nano Letters, 17, 7968–7973.

    Article  CAS  Google Scholar 

  • Zheng, Y., Jiao, Y., Jaroniec, M., & Qiao, S. Z. (2015). Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angewandte Chemie International Edition, 54, 52–65.

    Article  CAS  Google Scholar 

  • Zhong, X., Sun, Y., Chen, X., Zhuang, G., Li, X., & Wang, J.-G. (2016). Mo doping induced more active sites in Urchin-Like W18O49 nanostructure with remarkably enhanced performance for hydrogen evolution reaction. Advanced Functional Materials, 26, 5778–5786.

    Article  CAS  Google Scholar 

  • Zhou, W., Hou, D., Sang, Y., Yao, S., Zhou, J., Li, G., Li, L., Liu, H., & Chen, S. (2014). MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2, 11358–11364.

    Article  CAS  Google Scholar 

  • Zhou, W., Wu, X.-J., Cao, X., Huang, X., Tan, C., Tian, J., Liu, H., Wang, J., & Zhang, H. (2013). Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy & Environmental Science, 6, 2921–2924.

    Article  CAS  Google Scholar 

  • Zhou, W., Zheng, J.-L., Yue, Y.-H., & Guo, L. (2015). Highly stable rGO-wrapped Ni3S2 nanobowls: Structure fabrication and superior long-life electrochemical performance in LIBs. Nano Energy, 11, 428–435.

    Article  CAS  Google Scholar 

  • Zhou, X., Jiang, J., Ding, T., Zhang, J., Pan, B., Zuo, J., & Yang, Q. (2014). Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe2−x nanosheets for high-performance hydrogen evolution. Nanoscale, 6, 11046–11051.

    Google Scholar 

  • Zhu, Y., Zhou, W., Sunarso, J., Zhong, Y., & Shao, Z. (2016). Phosphorus-doped Perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution. Advanced Functional Materials, 26, 5862–5872.

    Article  CAS  Google Scholar 

  • Zou, X., Su, J., Silva, R., Goswami, A., Sathe, B. R., & Asefa, T. (2013). Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-embedded graphitic C3N4. Chemical Communications, 49, 7522–7524.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samantara, A.K., Ratha, S. (2019). Electroactive Materials. In: Metal Oxides/Chalcogenides and Composites. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-24861-1_4

Download citation

Publish with us

Policies and ethics