Skip to main content

Hamiltonicity for Convex Shape Delaunay and Gabriel Graphs

  • Conference paper
  • First Online:
  • 1041 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11646))

Abstract

We study Hamiltonicity for some of the most general variants of Delaunay and Gabriel graphs. Instead of defining these proximity graphs using circles, we use an arbitrary convex shape \(\mathcal {C}\). Let S be a point set in the plane. The k-order Delaunay graph of S, denoted k-\({DG}_{\mathcal {C}}(S)\), has vertex set S and edge pq provided that there exists some homothet of \(\mathcal {C}\) with p and q on its boundary and containing at most k points of S different from p and q. The k-order Gabriel graph k-\({GG}_{\mathcal {C}}(S)\) is defined analogously, except for the fact that the homothets considered are restricted to be smallest homothets of \(\mathcal {C}\) with p and q on its boundary. We provide upper bounds on the minimum value of k for which k-\({GG}_{\mathcal {C}}(S)\) is Hamiltonian. Since k-\({GG}_{\mathcal {C}}(S)\) \(\subseteq \) k-\({DG}_{\mathcal {C}}(S)\), all results carry over to k-\({DG}_{\mathcal {C}}(S)\). In particular, we give upper bounds of 24 for every \(\mathcal {C}\) and 15 for every point-symmetric \(\mathcal {C}\). We also improve the bound to 7 for squares, 11 for regular hexagons, 12 for regular octagons, and 11 for even-sided regular t-gons (for \(t \ge 10)\). These constitute the first general results on Hamiltonicity for convex shape Delaunay and Gabriel graphs.

P.B. was partially supported by NSERC. P.C. was supported by CONACyT. M.S. was supported by the Czech Science Foundation, grant number GJ19-06792Y, and by institutional support RVO:67985807. R.S. was supported by MINECO through the Ramón y Cajal program. P.C. and R.S. were also supported by projects MINECO MTM2015-63791-R and Gen. Cat. 2017SGR1640. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A graph is 1-tough if removing k vertices from it results in \(\le k\) connected components.

  2. 2.

    Note that this implies that the standard Delaunay triangulation is the 0-DG.

  3. 3.

    According to the definition of k-RNG in [9], they showed Hamiltonicity for 20-RNG.

  4. 4.

    A shape \(\mathcal {C}\) is point-symmetric with respect to a point \(x \in \mathcal {C}\) provided that for every point \(p \in \mathcal {C}\) there is a corresponding point \(q \in \mathcal {C}\) such that \(pq \in \mathcal {C}\) and x is the midpoint of pq.

  5. 5.

    A function \(\rho (x)\) is a norm if: (a) \(\rho (x)=0\) if and only if \(x=\bar{o}\), (b) \(\rho (\lambda x)=|\lambda |\rho (x)\) where \(\lambda \in \mathbb {R}\), and (c) \(\rho (x+y) \le \rho (x)+\rho (y)\).

  6. 6.

    The Minkowski sum of two sets A and B is defined as \(A\oplus B=\{a+b: a\in A, b\in B \}\).

  7. 7.

    Since S is in general position, only a and b can lie on the boundary of \(\mathcal {C}(a,b)\).

References

  1. Abellanas, M., Bose, P., García-López, J., Hurtado, F., Nicolás, C.M., Ramos, P.: On structural and graph theoretic properties of higher order Delaunay graphs. Int. J. Comput. Geom. Appl. 19(6), 595–615 (2009). https://doi.org/10.1142/S0218195909003143

    Article  MathSciNet  Google Scholar 

  2. Ábrego, B.M., et al.: Matching points with squares. Discrete Comput. Geom. 41(1), 77–95 (2009). https://doi.org/10.1007/s00454-008-9099-1

    Article  MathSciNet  Google Scholar 

  3. Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific Publishing Company, Hackensack (2013)

    Book  Google Scholar 

  4. Aurenhammer, F., Paulini, G.: On shape Delaunay tessellations. Inf. Process. Lett. 114(10), 535–541 (2014). https://doi.org/10.1016/j.ipl.2014.04.007

    Article  MathSciNet  MATH  Google Scholar 

  5. Biniaz, A., Maheshwari, A., Smid, M.: Higher-order triangular-distance Delaunay graphs: graph-theoretical properties. Comput. Geom. 48(9), 646–660 (2015). https://doi.org/10.1016/j.comgeo.2015.07.003

    Article  MathSciNet  MATH  Google Scholar 

  6. Biniaz, A., Maheshwari, A., Smid, M.: Bottleneck matchings and Hamiltonian cycles in higher-order Gabriel graphs. In: Proceedings of the 32nd European Workshop on Computational Geometry (EuroCG16), pp. 179–182 (2016)

    Google Scholar 

  7. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between theta-graphs, Delaunay triangulations, and orthogonal surfaces. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 266–278. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-7_25

    Chapter  Google Scholar 

  8. Bose, P., Carmi, P., Collette, S., Smid, M.: On the stretch factor of convex Delaunay graphs. J. Comput. Geom. 1(1), 41–56 (2010). https://doi.org/10.1007/978-3-540-92182-0_58

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, M., Tang, C.Y., Lee, R.C.T.: 20-relative neighborhood graphs are Hamiltonian. J. Graph Theory 15(5), 543–557 (1991). https://doi.org/10.1002/jgt.3190150507

    Article  MathSciNet  MATH  Google Scholar 

  10. Chew, L.P.: There are planar graphs almost as good as the complete graph. J. Comput. System Sci. 39(2), 205–219 (1989). https://doi.org/10.1016/0022-0000(89)90044-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Dillencourt, M.B.: A non-Hamiltonian, nondegenerate Delaunay triangulation. Inf. Process. Lett. 25(3), 149–151 (1987). https://doi.org/10.1016/0020-0190(87)90124-4

    Article  MathSciNet  MATH  Google Scholar 

  12. Dillencourt, M.B.: Toughness and Delaunay triangulations. Discrete Comput. Geom. 5, 575–601 (1990). https://doi.org/10.1007/BF02187810

    Article  MathSciNet  Google Scholar 

  13. Fodor, F.: The densest packing of 13 congruent circles in a circle. Beitr. Algebra Geom. 44(2), 431–440 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Fodor, F.: Packing of 14 congruent circles in a circle. Stud. Univ. Zilina Math. Ser 16, 25–34 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Kaiser, T., Saumell, M., Cleemput, N.V.: 10-Gabriel graphs are Hamiltonian. Inf. Process. Lett. 115(11), 877–881 (2015). https://doi.org/10.1016/j.ipl.2015.05.013

    Article  MathSciNet  MATH  Google Scholar 

  16. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, Chichester (2000)

    Book  Google Scholar 

  17. Saumell Mendiola, M.: Some problems on proximity graphs. Ph.D. thesis, Universitat Politècnica de Catalunya (2011)

    Google Scholar 

  18. Shamos, M.: Computational Geometry. Ph.D. thesis, Yale University (1978)

    Google Scholar 

  19. Xia, G.: The stretch factor of the Delaunay triangulation is less than 1.998. SIAM J. Comput. 42(4), 1620–1659 (2013). https://doi.org/10.1137/110832458

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Cano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bose, P., Cano, P., Saumell, M., Silveira, R.I. (2019). Hamiltonicity for Convex Shape Delaunay and Gabriel Graphs. In: Friggstad, Z., Sack, JR., Salavatipour, M. (eds) Algorithms and Data Structures. WADS 2019. Lecture Notes in Computer Science(), vol 11646. Springer, Cham. https://doi.org/10.1007/978-3-030-24766-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24766-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24765-2

  • Online ISBN: 978-3-030-24766-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics