Skip to main content

Conditions for Legitimate Memory Kernel Master Equation

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 229))

Abstract

We provide conditions for the memory kernel governing time non-local quantum master equation which guarantee that the corresponding dynamical map is completely positive and trace-preserving. This approach gives rise to the new parametrization of dynamical maps in terms of two completely positive maps – so called legitimate pair. Actually, this new parameterizations is a natural generalization of Markovian semigroup. Interestingly our class contains recently studied models like semi-Markov evolution and collision models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford Univ. Press, Oxford, 2007)

    Book  Google Scholar 

  2. U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 2000)

    Google Scholar 

  3. Á. Rivas, S.F. Huelga, Open Quantum Systems. An Introduction, Springer Briefs in Physics (Springer, Berlin, 2011)

    Google Scholar 

  4. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (CUP, Cambridge, 2000)

    MATH  Google Scholar 

  5. S. Nakajima, Prog. Theor. Phys. 20, 948 (1958); R. Zwanzig, J. Chem. Phys. 33, 1338 (1960)

    Google Scholar 

  6. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976)

    Article  ADS  Google Scholar 

  7. G. Lindblad, Comm. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  8. Á. Rivas, S.F. Huelga, M.B. Plenio, Rep. Prog. Phys. 77, 094001 (2014)

    Article  ADS  Google Scholar 

  9. H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, Rev. Mod. Phys. 88, 021002 (2016)

    Article  ADS  Google Scholar 

  10. I. de Vega, D. Alonso, Rev. Mod. Phys. 89, 015001 (2017)

    Article  ADS  Google Scholar 

  11. L. Li, M.J.W. Hall, H.M. Wiseman, Phys. Rep. 759, 1 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  12. S.M. Barnett, S. Stenholm, Phys. Rev. A 64, 033808 (2001)

    Article  ADS  Google Scholar 

  13. A. Shabani, D.A. Lidar, Phys. Rev. A 71, 020101(R) (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Maniscalco, Phys. Rev. A 72, 024103 (2005); S. Maniscalco and F. Petruccione, Phys. Rev. A 73, 012111 (2006)

    Google Scholar 

  15. A.A. Budini, Phys. Rev. A 69, 042107 (2004)

    Article  ADS  Google Scholar 

  16. J. Wilkie, Phys. Rev. E 62, 8808 (2000); J. Wilkie and Y.M. Wong, J. Phys. A: Math. Theor. 42, 015006 (2009)

    Google Scholar 

  17. A. Kossakowski, R. Rebolledo, Open Syst. Inf. Dyn. 14, 265 (2007); ibid.16, 259 (2009)

    Google Scholar 

  18. H.-P. Breuer, B. Vacchini, Phys. Rev. Lett. 101 (2008) 140402; Phys. Rev. E 79, 041147 (2009)

    Google Scholar 

  19. B. Vacchini, A. Smirne, E.-M. Laine, J. Piilo, H.-P. Breuer, New J. Phys. 13, 093004 (2011)

    Article  ADS  Google Scholar 

  20. F.A. Wudarski, P. Należyty, G. Sarbicki, D. Chruściński, Phys. Rev. A 91, 042105 (2015)

    Article  ADS  Google Scholar 

  21. B. Vacchini, Phys. Rev. Lett. 117, 230401 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. D. Chruściński, A. Kossakowski, Europhys. Lett. 97, 20005 (2012)

    Article  ADS  Google Scholar 

  23. D. Chruściński, A. Kossakowski, Phys. Rev. A 94, 020103(R) (2016)

    Article  ADS  Google Scholar 

  24. D. Chruściński, A. Kossakowski, Phys. Rev. A 95, 042131 (2017)

    Article  ADS  Google Scholar 

  25. K. Siudzińska, D. Chruściński, 96, 022129 (2017)

    Google Scholar 

  26. V. Paulsen, Completely Bounded Maps and Operator Algebras (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  27. E. Størmer, Positive Linear Maps of Operator Algebras (Springer Monographs in Mathematics, 2013)

    Google Scholar 

  28. F. Ciccarello, G.M. Palma, V. Giovannetti, Phys. Rev. A 87, 040103(R) (2013)

    Article  ADS  Google Scholar 

  29. I. Siemon, A.S. Holevo, R. Werner, Open Sys. Inf. Dyn. 24, 1740015 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was partially supported by the National Science Center project 2015/17/B/ST2/02026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Chruściński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chruściński, D. (2019). Conditions for Legitimate Memory Kernel Master Equation. In: Marmo, G., Martín de Diego, D., Muñoz Lecanda, M. (eds) Classical and Quantum Physics. Springer Proceedings in Physics, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-030-24748-5_8

Download citation

Publish with us

Policies and ethics