Skip to main content

Application of Lie Systems to Quantum Mechanics: Superposition Rules

  • Conference paper
  • First Online:
Classical and Quantum Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 229))

Abstract

We prove that t-dependent Schrödinger equations on finite-dimensional Hilbert spaces determined by t-dependent Hermitian Hamiltonian operators can be described through Lie systems admitting a Vessiot-Guldberg Lie algebra of Kähler vector fields. This result is extended to other related Schrödinger equations, e.g. projective ones, and their properties are studied through Poisson, presymplectic, and Kähler structures. This leads to deriving nonlinear superposition rules for them depending on a lower (or equal) number of solutions than standard linear ones. As an application, we study n-qubit systems and special attention is paid to the one-qubit case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London Ser. A. 392, 45–57 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. N.H. Ibragimov (ed.), CRC Handbook of Lie Group Analysis of Differential Equations, Volume I: Symmetries, Exact Solutions, and Conservation Laws (CRC Press, Boca Raton, 1993)

    Google Scholar 

  3. P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 2000)

    MATH  Google Scholar 

  4. J.F. Cariñena, A. Ibort, G. Marmo, G. Morandi, Geometry from Dynamics, Classical and Quantum (Springer, Dordrecht, 2015)

    Book  MATH  Google Scholar 

  5. J.F. Cariñena, J. Grabowski, G. Marmo, Lie-Scheffers Systems: A Geometric Approach (Bibliopolis, Naples, 2000)

    MATH  Google Scholar 

  6. J.F. Cariñena, J. Grabowski, G. Marmo, Superposition rules, Lie theorem, and partial differential equations. Rep. Math. Phys. 60, 237–258 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. N.H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations (Wiley, Chichester, 1999)

    MATH  Google Scholar 

  8. S. Lie, G. Scheffers, Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen (B. G. Teubner, Leipzig, 1893)

    Google Scholar 

  9. P. Winternitz, Lie groups and solutions of nonlinear differential equations, in Nonlinear Phenomena, ed. by K.B. Wolf (Springer, Berlin, 1983), pp. 263–305

    Chapter  Google Scholar 

  10. J.F. Cariñena, Recent advances on Lie systems and their applications. Banach Cent. Publ. 113, 95–110 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. R.M. Angelo, E.I. Duzzioni, A.D. Ribeiro, Integrability in \(t\)-dependent systems with one degree of freedom. J. Phys. A: Math. Theor. 45, 055101 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. J.F. Cariñena, J. de Lucas, A. Ramos, A geometric approach to time evolution operators of Lie quantum systems. Int. J. Theor. Phys. 48, 1379–1404 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Á. Ballesteros, J.F. Cariñena, F.J. Herranz, J. de Lucas, C. Sardón, From constants of motion to superposition rules for Lie-Hamilton systems. J. Phys. A: Math. Theor. 46, 285203 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Campoamor-Stursberg, Low dimensional Vessiot-Guldberg-Lie algebras of second-order ordinary differential equations. Symmetry 8, 15 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. J.F. Cariñena, J. de Lucas, Applications of Lie systems in dissipative Milne-Pinney equations. Int. J. Geom. Meth. Mod. Phys. 6, 683–699 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.F. Cariñena, J. de Lucas, M.F. Rañada, Recent applications of the theory of Lie systems in Ermakov systems. SIGMA 4, 031 (2008)

    MathSciNet  MATH  Google Scholar 

  17. J.N. Clelland, P.J. Vassiliou, A solvable string on a Lorentzian surface. Differ. Geom. Appl. 33, 177–198 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Z. Fiala, Evolution equation of Lie-type for finite deformations, time-discrete integration, and incremental methods. Acta Mech. 226, 17–35 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Menini, A. Tornambè, Nonlinear superposition formulas for two classes of non-holonomic systems. J. Dyn. Control Syst. 20, 365–382 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. J.F. Cariñena, J. de Lucas, Lie systems: theory, generalisations, and applications. Diss. Math. 479, 162 (2011)

    MathSciNet  MATH  Google Scholar 

  21. N.H. Ibragimov, Discussion of Lie’s nonlinear superposition theory, in Proceedings of International Conference on MOGRAN 2000 (Ufa, 2000), pp. 3–5

    Google Scholar 

  22. N.H. Ibragimov, Utilization of canonical variables for integration of systems of first-order differential equations. Arch. ALGA 6, 1–18 (2009)

    Google Scholar 

  23. Á. Ballesteros, A. Blasco, F.J. Herranz, J. de Lucas, C. Sardón, Lie-Hamilton systems on the plane: properties, classification and applications. J. Differ. Equ. 258, 2873–2907 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. R. Flores-Espinoza, Monodromy factorization for periodic Lie systems and reconstruction phases, in AIP Conference Proceedings, vol. 1079, ed. by P. Kielanowski et al. (AIP Publishing, New York, 2008), pp. 189–195

    Google Scholar 

  25. R. Flores-Espinoza, Periodic first integrals for Hamiltonian systems of Lie type. Int. J. Geom. Methods Mod. Phys. 8, 1169–1177 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. J.F. Cariñena, J. de Lucas, C. Sardón, Lie-Hamilton systems: theory and applications. Int. J. Geom. Methods Mod. Phys. 10, 1350047 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. de Lucas, S. Vilariño, \(k\)-Symplectic Lie systems: theory and applications. J. Differ. Equ. 258, 2221–2255 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. F.J. Herranz, J. de Lucas, C. Sardón, Jacobi-Lie systems: fundamentals and low-dimensional classification, in AIMS Conference Publication 2015, ed. by M. de León, et al. (2015), pp. 605–614

    Google Scholar 

  29. J.F. Cariñena, J. Grabowski, J. de Lucas, C. Sardón, Dirac-Lie systems and Schwarzian equations. J. Differ. Equ. 257, 2303–2340 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. R. Flores-Espinoza, J. de Lucas, Y.M. Vorobiev, Phase splitting for periodic Lie systems. J. Phys. A: Math. Theor. 43, 205–208 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Blasco, F.J. Herranz, J. de Lucas, C. Sardón, Lie-Hamilton systems on the plane: applications and superposition rules. J. Phys. A: Math. Theor. 48, 345202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. J.F. Cariñena, A. Ramos, Applications of Lie systems in quantum mechanics and control theory. Banach Cent. Publ. 59, 143–162 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. J.F. Cariñena, A. Ramos, Lie systems and connections in fibre bundles: applications in quantum mechanics, in Proceedings of 9th ICDGA (Matfyzpress, Prague, 2005), pp. 437–452

    Google Scholar 

  34. D.C. Brody, L.P. Hughston, Geometric Quantum Mechanics. J. Geom. Phys. 38, 19–53 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. J.F. Cariñena, J. Clemente-Gallardo, G. Marmo, Geometrization of quantum mechanics. Theor. Math. Phys. 152, 894–903 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Clemente-Gallardo, G. Marmo, Basics of quantum mechanics, geometrization and some applications to quantum information. Int. J. Geom. Methods Mod. Phys. 5, 989–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. J.A. Jover-Galtier, Open quantum systems: geometric description, dynamics and control. Ph.D. thesis, Universidad de Zaragoza (2017)

    Google Scholar 

  38. D.C. Brody, L.P. Hughston, The quantum canonical ensemble. J. Math. Phys. 39, 6502–6508 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. A. Ekert, M. Ericsson, P. Hayden, H. Inamori, J.A. Jones, D.K.L. Oi, V. Vendral, Geometric quantum computation. J. Mod. Opt. 47, 14–15 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Abraham, J.E. Marsden, Foundations of Mechanics, 2nd edn. (Addison-Wesley, Redwood City, 1987)

    Google Scholar 

  41. E.L. Ince, Ordinary Differential Equations (Dover Publications, New York, 1944)

    MATH  Google Scholar 

  42. M. de León, C. Sardón, Geometric Hamilton-Jacobi theory on Nambu-Poisson manifolds. J. Math. Phys. 58, 033508 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. A. Ashtekar, T.A. Schilling, Geometrical formulation of quantum mechanics, in Einstein’s Path, ed. by A. Harvey (Springer, New York, 1999), pp. 23–65

    Chapter  Google Scholar 

  44. W. Ballmann, Lectures on Kähler Manifolds (EMS Publishing House, Zürich, 2006)

    Book  MATH  Google Scholar 

  45. M. Nakahara, Geometry, Topology and Physics, 2nd edn. (Institute of Physics Publishing, 2003)

    Google Scholar 

  46. G.W. Gibbons, Typical states and density matrices. J. Geom. Phys. 8, 147–162 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (Academic Press, London, 1978)

    MATH  Google Scholar 

  48. J. Wolf, On the classification of Hermitian symmetric spaces. Indiana Univ. J. Math. Mech. 13, 489–495 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  49. J.F. Cariñena, J. Grabowski, G. Marmo, Some physical applications of systems of differential equations admitting a superposition rule. Rep. Math. Phys. 48, 47–58 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. M. Crampin, F.A.E. Pirani, Applicable Differential Geometry (Cambridge University Press, Cambridge, 1986)

    MATH  Google Scholar 

  51. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. 2 (Interscience Publishers, New York 1963, 1969)

    Google Scholar 

  52. I. Vaisman, Lectures on the Geometry of Poisson Manifolds (Birkhaüser, Basel, 1994)

    Book  MATH  Google Scholar 

  53. E. Ercolessi, G. Morandi, G. Marmo, From the equations of motion to the canonical commutation relations Riv. Nuovo Cimento 33, 401–590 (2010)

    Google Scholar 

  54. R. Cirelli, M. Gatti, A. Manià, The pure state space of quantum mechanics as Hermitian symmetric space. J. Geom. Phys. 45, 267–284 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. V.I. Man’ko, G. Marmo, E.C.G. Sudarshan, F. Zaccaria, Interference and entanglement: an intrinsic approach. J. Phys. A: Math. Gen. 35, 7137–7157 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. V.I. Man’ko, G. Marmo, E.C.G. Sudarshan, F. Zaccaria, Inner composition law of pure states as a purification of impure states. Phys. Lett. A 273, 31–36 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J. F. Cariñena, J. A. Jover-Galtier and J. Clemente-Gallardo acknowledge partial financial support from MINECO (Spain) grant number MTM2015-64166-C2-1. Research of J. de Lucas was supported under the contract 1100/112000/16. Research of J. Clemente-Gallardo and J. A. Jover-Galtier was financed by projects MICINN Grants FIS2013-46159-C3-2-P. Research of J. A. Jover-Galtier was financed by DGA grant number B100/13 and by “Programa de FPU del Ministerio de Educación, Cultura y Deporte” grant number FPU13/01587.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Clemente-Gallardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cariñena, J.F., Clemente-Gallardo, J., Jover-Galtier, J.A., de Lucas, J. (2019). Application of Lie Systems to Quantum Mechanics: Superposition Rules. In: Marmo, G., Martín de Diego, D., Muñoz Lecanda, M. (eds) Classical and Quantum Physics. Springer Proceedings in Physics, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-030-24748-5_6

Download citation

Publish with us

Policies and ethics