Skip to main content

Some Properties of Multisymplectic Manifolds

  • Conference paper
  • First Online:
Classical and Quantum Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 229))

Abstract

This lecture is devoted to review some of the main properties of multisymplectic geometry.  In particular, after reminding the standard definition of multisymplectic manifold, we introduce its characteristic submanifolds, the canonical models, and other relevant kinds of multisymplectic manifolds, such as those where the existence of Darboux-type coordinates is assured. The Hamiltonian structures that can be defined in these manifolds are also studied, as well as other important properties, such as their invariant forms and the characterization by automorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Aldaya, J.A. de Azcárraga, Geometric formulation of classical mechanics and field theory. Riv. Nuovo Cimento 3(10), 1–66 (1980). https://doi.org/10.1063/1.523904

    Article  MathSciNet  Google Scholar 

  2. A. Awane, \(k\)-symplectic structures. J. Math. Phys. 33(12), 4046–4052 (1992), https://doi.org/10.1063/1.529855

  3. A. Banyaga, On isomorphic classical diffeomorphism groups. I. Proc. Am. Math. Soc. 98(1), 113–118 (1986). https://doi.org/10.1090/S0002-9939-1986-0848887-5

    Article  MathSciNet  MATH  Google Scholar 

  4. J.F. Cariñena, M. Crampin, L.A. Ibort, On the multisymplectic formalism for first order field theories. Diff. Geom. Appl. 1(4), 345–374 (1991). https://doi.org/10.1016/0926-2245(91)90013-Y

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Cantrijn, A. Ibort, M. de León, Hamiltonian structures on multisymplectic manifolds. Rend. Sem. Mat. Univ. Pol. Torino 54(3), 225–236 (1996)

    MathSciNet  MATH  Google Scholar 

  6. F. Cantrijn, A. Ibort, M. de León, On the geometry of multisymplectic manifolds. J. Aust. Math. Soc. Ser. 66, 303–330 (1999). https://doi.org/10.1017/S1446788700036636

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Crampin, F.A.E. Pirani. Applicable Differential Geometry. London Mathematical Society, Lecture Notes Series, vol. 59 (Cambridge University Press, Cambridge, 1986). https://doi.org/10.1017/CBO9780511623905

  8. M. de León, J. Marín-Solano, J.C. Marrero, A Geometrical approach to classical field theories: a constraint algorithm for singular theories, in Proceeding New Developments in Differential Geometry, eds. by L. Tamassi-J. Szenthe (Kluwer Acad. Press, 1996), pp. 291–312, https://doi.org/10.1007/978-94-009-0149-0_22

  9. M. de León D. Martín de Diego, A. Santamaría-Merino, Tulczyjew triples and Lagrangian submanifolds in classical field theories, in Applied Differential Geometry and Mechanics, eds. by W. Sarlet, F. Cantrijn (Univ. Gent, Gent, Academia Press, 2003) pp. 21–47

    Google Scholar 

  10. M. de León, I. Méndez, M. Salgado, Regular \(p\)-almost cotangent structures. J. Korean Math. Soc. 25(2), 273–287 (1988)

    Google Scholar 

  11. M. de León, E. Merino, J.A. Oubiña, P.R. Rodrigues, M. Salgado, Hamiltonian systems on \(k\)-cosymplectic manifolds. J. Math. Phys. 39(2), 876–893 (1998). https://doi.org/10.1063/1.532358

    Google Scholar 

  12. M. de León, M. Salgado, S. Vilariño, Methods of differential geometry in classical field theories:\(k\)-symplectic and\(k\)-cosymplectic approaches, (World Scientific Publishing Co. Pte. Ltd., Hackensack NJ, 2016). ISBN 978-981-4699-75-4; 978-981-4699-77-8

    Google Scholar 

  13. A. Echeverría-Enríquez, A. Ibort, M.C. Muñoz-Lecanda, N. Román-Roy, Invariant forms and automorphisms of locally homogeneous multisymplectic manifolds. J. Geom. Mech. 4(4), 397–419 (2012). https://doi.org/10.3934/jgm.2012.4.397

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Echeverría-Enríquez, M.C. Muñoz-Lecanda, N. Román-Roy, Geometry of Lagrangian first-order classical field theories. Forts. Phys. 44(3), 235–280 (1996). https://doi.org/10.1002/prop.2190440304

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Echeverría-Enríquez, M.C. Muñoz-Lecanda, N. Román-Roy, On the multimomentum bundles and the Legendre maps in field theories. Rep. Math. Phys. 45(1), 85–105 (2000). https://doi.org/10.1016/S0034-4877(00)88873-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. P.L. García, The Poincaré-Cartan invariant in the calculus of variations. Symp. Math. 14, 219–246 (1973)

    Google Scholar 

  17. G. Giachetta, L. Mangiarotti, G. Sardanashvily, New Lagrangian and Hamiltonian methods in Field Theory (World Scientific Publishing Co., Inc., River Edge NJ, 1997)

    Book  Google Scholar 

  18. H. Goldschmidt, S. Sternberg, The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier Grenoble 23(1), 203–267 (1973). https://doi.org/10.5802/aif.451

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Gomis, J. Llosa, N. Román-Roy, Lee Hwa Chung theorem for presymplectic manifolds. Canonical transformations for constrained systems. J. Math. Phys. 25(5), 1348–1355 (1984). https://doi.org/10.1063/1.526303

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. M.J. Gotay, J. Isenberg, J.E. Marsden, Momentum maps and classical relativistic fields I: Covariant field theory. arXiv:physics/9801019 (2004)

  21. L. A. Ibort, Multisymplectic geometry: Generic and exceptional, in IX Fall Workshop on Geometry and Physics, eds. by X. Gràcia, J. Marín-Solano, M.C. Muñoz-Lecanda, N. Román-Roy), UPC Eds., pp. 79–88 (2001) (Vilanova i la Geltrú, Spain 2000)

    Google Scholar 

  22. I.V. Kanatchikov, Canonical structure of classical field theory in the polymomentum phase space. Rep. Math. Phys. 41(1), 49–90 (1998). https://doi.org/10.1016/S0034-4877(98)80182-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. J. Kijowski, W.M. Tulczyjew, A symplectic framework for field theories, in Lecture Notes in Physics vol. 170 (Springer-Verlag, Berlin 1979). (ISBN: 978-3-540-09538-5)

    Google Scholar 

  24. L. Hwa Chung, The universal integral invariants of Hamiltonian systems and applications to the theory of canonical transformations. Proc. Roy. Soc. 62(3), 237–246 (1948). https://doi.org/10.1017/S0080454100006646

  25. J. Llosa, N. Román-Roy, Invariant forms and Hamiltonian systems: A geometrical setting. Int. J. Theor. Phys. 27(12), 1533–1543 (1988). https://doi.org/10.1007/BF00669290

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Martin, A Darboux theorem for multi-symplectic manifolds. Lett. Math. Phys. 16(2), 133–138 (1988). https://doi.org/10.1007/BF00402020

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. P.D. Prieto Martínez, N. Román-Roy, A new multisymplectic unified formalism for second-order classical field theories. J. Geom. Mech. 7(2), 203–253 (2015). https://doi.org/10.3934/jgm.2015.7.203

  28. A.M. Rey, N. Román-Roy, M. Salgado, Gunther’s formalism k-symplectic formalism in classical field theory: Skinner-Rusk approach and the evolution operator. J. Math. Phys. 46(5), 052901 (2005). https://doi.org/10.1063/1.1876872

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. A.M. Rey, N. Román-Roy, M. Salgado, S. Vilariño, \(k\)-cosymplectic classical field theories: Tulckzyjew and Skinner-Rusk formulations. Math. Phys. Anal. Geom. 15(2), 1–35 (2011). https://doi.org/10.1007/s11040-012-9104-z

    Google Scholar 

  30. N. Román-Roy, Multisymplectic Lagrangian and Hamiltonian formalisms of classical field theories. Symm. Integ. Geom. Methods and Appl. (SIGMA). 5(100), 25 (2009). https://doi.org/10.3842/SIGMA.2009.100

  31. L. Ryvkin, T. Wurzbacher, An invitation to multisymplectic geometry. J. Geom. Phys. 142, 9–36 (2019). https://doi.org/10.1016/j.geomphys.2019.03.006

  32. D.J. Saunders, The geometry of jet bundles, in London Mathematical Society, Lecture Notes Series, vol. 142 (Cambridge University Press, Cambridge, New York 1989). (ISBN-13: 978-0521369480)

    Google Scholar 

  33. M. Wechsler, Homeomorphism groups of certain topological spaces. Ann. Math. 62(3), 360–373 (1954). https://doi.org/10.2307/1970069

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I acknowledge the financial support of the Ministerio de Ciencia e Innovación (Spain), projects MTM2014–54855–P and MTM2015-69124–REDT, and of Generalitat de Catalunya, project 2017–SGR–932.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narciso Román-Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Román-Roy, N. (2019). Some Properties of Multisymplectic Manifolds. In: Marmo, G., Martín de Diego, D., Muñoz Lecanda, M. (eds) Classical and Quantum Physics. Springer Proceedings in Physics, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-030-24748-5_18

Download citation

Publish with us

Policies and ethics