Skip to main content

Notions of Infinity in Quantum Physics

  • Conference paper
  • First Online:
Classical and Quantum Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 229))

  • 569 Accesses

Abstract

In this article we will review some notions of infiniteness that appear in Hilbert space operators and operator algebras. These include proper infiniteness, Murray von Neumann’s classification into type I and type III factors and the class of Følner C*-algebras that capture some aspects of amenability. We will also mention how these notions reappear in the description of certain mathematical aspects of quantum mechanics, quantum field theory and the theory of superselection sectors. We also show that the algebra of the canonical anti-commutation relations (CAR-algebra) is in the class of Følner C*-algebras.

Dedicated to Alberto Ibort on the occasion of his 60th birthday.

Supported by research projects MTM2017-84098-P and Severo Ochoa SEV-2015-0554 of the Spanish Ministry of Economy and Competition (MINECO), Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Kerr, H. Li, Ergodic Theory. Independence and Dichotomies, Springer Monographs in Mathematics (Springer, Cham, 2016)

    Book  Google Scholar 

  2. J. von Neumann, Zur allgemeinen Theorie des Masses. Fund. Math. 13, 73–116 (1929)

    Article  Google Scholar 

  3. A.L. Paterson, Amenability (American Mathematical Society, Providence, Rhode Island, 1988)

    Book  Google Scholar 

  4. V. Runde, Lectures on Amenability (Springer, Berlin, 2002)

    Book  Google Scholar 

  5. G. Tomkowicz, S. Wagon, The Banach-Tarski Paradox, 2nd edn. (Cambridge University Press, Cambridge, 2016)

    MATH  Google Scholar 

  6. P. Ara, K. Li, F. Lledó, J. Wu, Amenability of coarse spaces and \(\mathbb{K}\)-algebras. Bull. Math. Sci. 8, 257–306 (2018)

    Google Scholar 

  7. P. Ara, K. Li, F. Lledó, J. Wu, Amenability and uniform Roe algebras. J. Math. Anal. Appl. 459, 686–716 (2018)

    Article  MathSciNet  Google Scholar 

  8. T. Ceccherini-Silberstein, Around amenability, Pontryagin Conference, 8, Algebra (Moscow, 1998). J. Math. Sci. (New York) 106, 3145–3163 (2001)

    Article  MathSciNet  Google Scholar 

  9. T. Ceccherini-Silberstein, R. Grigorchuk, P. de la Harpe, Amenability and paradoxical decomposition for pseudogroups and for discrete metric spaces, Proc. Steklov Inst. Math. 224, 57–97 (1999). (Updated version also under http://arxiv.org/abs/1603.04212)

    Google Scholar 

  10. M. Day, Amenable semigroups. Illinois J. Math. 1, 509–544 (1957)

    Article  MathSciNet  Google Scholar 

  11. G. Elek, The amenability of affine algebras. J. Algebra 264, 469–478 (2003)

    Article  MathSciNet  Google Scholar 

  12. M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps: I. Math. Phys. Anal. Geom. 2, 323–415 (1999)

    Article  MathSciNet  Google Scholar 

  13. K.R. Davidson, C\(^*\)-Algebras by Example (American Mathematical Society, Providence, Rhode Island, 1996)

    Google Scholar 

  14. O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics. Vols. 1 and 2 (Springer, Berlin, 2002)

    Google Scholar 

  15. J. Cuntz, Simple C*-algebras generated by isometries. Commun. Math. Phys. 57, 173–185 (1977)

    Google Scholar 

  16. M. Keyl, T. Matsui, D. Schlingemann, R.F. Werner, Entanglement, Haag-duality and type properties of infinite quantum spin chains. Rev. Math. Phys. 18, 935–970 (2006)

    Article  MathSciNet  Google Scholar 

  17. P. Naaijkens, Localized endomorphisms in Kitaevs toric code on the plane. Rev. Math. Phys. 23(2011), 347–373 (2011)

    Article  MathSciNet  Google Scholar 

  18. N.P. Brown, N. Ozawa, \(C^*\)-Algebras and Finite-Dimensional Approximations (American Mathematical Society, Providence, Rhode Island, 2008)

    Google Scholar 

  19. E. Bédos, Notes on hypertraces and \(C^*\)-algebras. J. Operator Theory 34, 285–306 (1995)

    Google Scholar 

  20. P. Ara, F. Lledó, Amenable traces and Følner \(C^*\)-algebras. Expo. Math. 32, 161–177 (2014)

    Google Scholar 

  21. W. Arveson, \(C^*\)- algebras and numerical linear algebra. J. Funct. Anal. 122, 333–360 (1994)

    Google Scholar 

  22. E. Bédos, On Følner nets, Szegö’s theorem and other eigenvalue distribution theorems. Expo. Math. 15, 193–228 (1997). Erratum: Expo. Math. 15, 384 (1997)

    Google Scholar 

  23. F. Lledó, On spectral approximation, Følner sequences and crossed products. J. Approx. Theory 170, 155–171 (2013)

    Article  MathSciNet  Google Scholar 

  24. F. Lledó, D. Yakubovich, Følner sequences and finite operators. J. Math. Anal. Appl. 403, 464–476 (2013)

    Article  MathSciNet  Google Scholar 

  25. N.P. Landsman, Mathematical Topics between Classical and Quantum Mechanics (Springer, New York, 1998)

    Book  Google Scholar 

  26. G.G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory (Wiley Interscience, New York, 1972)

    MATH  Google Scholar 

  27. H. Baumgärtel, Operatoralgebraic Methods in Quantum Field Theory (Akademie Verlag, Berlin, A Series of Lectures, 1995)

    MATH  Google Scholar 

  28. R. Haag, Local Quantum Physics (Springer, Berlin, 1992)

    Book  Google Scholar 

  29. R. Haag, D. Kastler, An algebraic approach to quantum field theory. J. Math. Phys. 5, 848–861 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  30. J.E. Roberts, More lectures on algebraic quantum field theory, In Noncommutative Geometry, S. Doplicher, R. Longo (eds.), Lecture Notes in Mathematics Vol. 1831 (Springer, Berlin, 2004)

    Google Scholar 

  31. H. Baumgärtel, M. Jurke, F. Lledó, On free nets over Minkowski space. Rep. Math. Phys 35, 101–127 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  32. F. Lledó, Massless relativistic wave equations and quantum field theory. Ann. H. Poincar 5, 607–670 (2004)

    Article  MathSciNet  Google Scholar 

  33. M. Redhead, More ado about nothing. Fund. Phys. 25, 123–137 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Summers, Yet more ado about nothing, In Deep Beauty. Understanding the Quantum World Through Mathematical Innovation, ed. by H. Halvorson (Cambridge University Press, Cambridge, 2011), pp. 317–341

    Google Scholar 

  35. D. Buchholz, J. Yngvason, There are no causality problems for Fermi’s two-atom system. Phys. Rev. Lett. 73, 613–616 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  36. J. Yngvason, The role of type \(III\) factors in quantum field theory. Rep. Math. Phys. 55, 135–147 (2005)

    Google Scholar 

  37. S. Doplicher, R. Haag, J.E. Roberts, Fields, observables and gauge transformations I. Commun. Math. Phys. 13, 1–23 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  38. S. Doplicher, R. Haag, J.E. Roberts, Fields, observables and gauge transformations II. Commun. Math. Phys. 15, 173–200 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  39. S. Doplicher, J.E. Roberts, A new duality for compact groups. Invent. Math. 98, 157–218 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  40. S. Doplicher, J.E. Roberts, Endomorphisms of C*-algebras, cross products and duality for compact groups. Ann. Math. 130, 75–119 (1989)

    Article  MathSciNet  Google Scholar 

  41. K. Fredenhagen, Observables, superselection sectors and gauge groups, in New Symmetry Principles in Quantum Field Theory, ed. by J. Fröhlich, et al. (Plenum Press, New York, 1992)

    Google Scholar 

  42. H. Baumgärtel, F. Lledó, Superselection structures for C*-algebras with nontrivial center. Rev. Math. Phys. 9, 785–819 (1997)

    Article  MathSciNet  Google Scholar 

  43. H. Baumgärtel, F. Lledó, An application of DR-duality theory for compact groups to endomorphism categories of C*-algebras with nontrivial center. Fields Inst. Commun. 30, 1–10 (2001)

    MathSciNet  MATH  Google Scholar 

  44. H. Baumgärtel, F. Lledó, Duality of compact groups and Hilbert C*-systems. Int. J. Math. 15, 759–812 (2004)

    Article  Google Scholar 

  45. F. Lledó, E. Vasselli, Realization of Hilbert C*-systems in terms of Cuntz-Pimsner algebras. Int. J. Math. 20, 751–790 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Lledó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lledó, F., Martínez, D. (2019). Notions of Infinity in Quantum Physics. In: Marmo, G., Martín de Diego, D., Muñoz Lecanda, M. (eds) Classical and Quantum Physics. Springer Proceedings in Physics, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-030-24748-5_14

Download citation

Publish with us

Policies and ethics