Skip to main content

Dimensional Deception for the Noncommutative Torus

  • Conference paper
  • First Online:
Classical and Quantum Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 229))

  • 509 Accesses

Abstract

We study the dimensional aspect of the geometry of quantum spaces. Introducing a physically motivated notion of the scaling dimension, we study in detail the model based on a fuzzy torus. We show that for a natural choice of a deformed Laplace operator, this model demonstrates quite non-trivial behaviour: the scaling dimension flows from 2 in IR to 1 in UV. Unlike another model with the similar property, the so-called Horava-Lifshitz model, our construction does not have any preferred direction. The dimension flow is rather achieved by a rearrangement of the degrees of freedom. In this respect the number of dimensions is deceptive. Some physical consequences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is one more case: \(\mu \ll 1\). It can be analysed in the complete analogy with the ones we have considered. We will not describe it as it does not offer anything new.

  2. 2.

    The construction can be made, with little changes, also for theta rational.

  3. 3.

    In the following, when there is no cause of confusion, we will sometime omit the subscript n from \(q:n, q'_n\) and the like. This will render some formulas more explicit.

  4. 4.

    It is also true in the zero-dimensional approximation described in [17]. This is because (13.5) is incompatible with \((\mathscr {C}_q )^q = \mathbbm {1}_q\).

References

  1. N. Alkofer, F. Saueressig, O. Zanusso, Spectral dimensions from the spectral action. Phys. Rev. D91(2), 025,025 (2015). https://doi.org/10.1103/PhysRevD.91.025025

  2. A.A. Andrianov, L. Bonora, Finite-mode regularization of the fermion functional integral. Nucl. Phys. B 233, 232–246 (1984). https://doi.org/10.1016/0550-3213(84)90413-9

    Article  ADS  Google Scholar 

  3. A.A. Andrianov, L. Bonora, Finite mode regularization of the Fermion functional integral. 2. Nucl. Phys. B233, 247–261 (1984). https://doi.org/10.1016/0550-3213(84)90414-0

    Article  ADS  Google Scholar 

  4. A.A. Andrianov, F. Lizzi, Bosonic Spectral Action Induced from Anomaly Cancelation. JHEP 05, 057 (2010). https://doi.org/10.1007/JHEP05(2010)057

  5. A.H. Chamseddine, A. Connes, The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997). https://doi.org/10.1007/s002200050126

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A.H. Chamseddine, A. Connes, The uncanny precision of the spectral action. Commun. Math. Phys. 293, 867–897 (2010). https://doi.org/10.1007/s00220-009-0949-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. Connes, Noncommutative geometry (Academic Press, 1994)

    Google Scholar 

  8. A. Connes, On the spectral characterization of manifolds. J. Noncommut. Geom. 7, 1 (2013)

    Article  MathSciNet  Google Scholar 

  9. G.A. Elliott, D.E. Evans, The structure of the irrational rotation C*-algebra. Ann. Math. 138, 477–501 (1993). https://doi.org/10.2307/2946553

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Garcia Flores, X. Martin, D. O’Connor, Simulation of a scalar field on a fuzzy sphere. Int. J. Mod. Phys. A 24, 3917–3944 (2009). https://doi.org/10.1142/S0217751X09043195

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. C.M. Gregory, A. Pinzul, Noncommutative effects in entropic gravity. Phys. Rev. D88, 064,030 (2013). https://doi.org/10.1103/PhysRevD.88.064030

  12. S.S. Gubser, S.L. Sondhi, Phase structure of noncommutative scalar field theories. Nucl. Phys. B 605, 395–424 (2001). https://doi.org/10.1016/S0550-3213(01)00108-0

    Article  ADS  MATH  Google Scholar 

  13. P. Horava, Quantum gravity at a lifshitz point. Phys. Rev. D79, 084,008 (2009). https://doi.org/10.1103/PhysRevD.79.084008

  14. M.A. Kurkov, F. Lizzi, Higgs-Dilaton Lagrangian from spectral regularization. Mod. Phys. Lett. A27, 1250,203 (2012). https://doi.org/10.1142/S0217732312502033

    Article  ADS  Google Scholar 

  15. M.A. Kurkov, F. Lizzi, M. Sakellariadou, A. Watcharangkool, Spectral action with zeta function regularization. Phys. Rev. D91(6), 065,013 (2015). https://doi.org/10.1103/PhysRevD.91.065013

  16. M.A. Kurkov, F. Lizzi, D. Vassilevich, High energy bosons do not propagate. Phys. Lett. B 731, 311–315 (2014). https://doi.org/10.1016/j.physletb.2014.02.053

    Article  ADS  MATH  Google Scholar 

  17. G. Landi, F. Lizzi, R.J. Szabo, From large N matrices to the noncommutative torus. Commun. Math. Phys. 217, 181–201 (2001). https://doi.org/10.1007/s002200000356

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. G. Landi, F. Lizzi, R.J. Szabo, Matrix quantum mechanics and soliton regularization of noncommutative field theory. Adv. Theor. Math. Phys. 8(1), 1–82 (2004). https://doi.org/10.4310/ATMP.2004.v8.n1.a1

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Lizzi, A. Pinzul, Dimensional deception from noncommutative tori: an alternative to the Horava-Lifshitz model. Phys. Rev. D96(12), 126,013 (2017). https://doi.org/10.1103/PhysRevD.96.126013

  20. F. Lizzi, B. Spisso, Noncommutative field theory: numerical analysis with the fuzzy disc. Int. J. Mod. Phys. A27, 1250,137 (2012). https://doi.org/10.1142/S0217751X12501370

    Article  ADS  MathSciNet  Google Scholar 

  21. F. Lizzi, R.J. Szabo, Noncommutative geometry and space-time gauge symmetries of string theory. Chaos Solitons Fractals 10, 445–458 (1999). https://doi.org/10.1016/S0960-0779(98)00085-X

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. F. Lizzi, P. Vitale, A. Zampini, The fuzzy disc: a review. J. Phys. Conf. Ser. 53, 830 (2006). https://doi.org/10.1088/1742-6596/53/1/054

    ADS  Google Scholar 

  23. D.V. Lopes, A. Mamiya, A. Pinzul, Infrared Horava Lifshitz gravity coupled to Lorentz violating matter: a spectral action approach. Class. Quant. Grav. 33(4), 045,008 (2016). https://doi.org/10.1088/0264-9381/33/4/045008

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Panero, Numerical simulations of a non-commutative theory: the scalar model on the fuzzy sphere. JHEP 05, 082 (2007). https://doi.org/10.1088/1126-6708/2007/05/082

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Pimsner, D. Voiculescu, Imbedding the irrational rotation C*-algebra into an AF-algebra. J. Op. Theory 4, 201–210 (1980)

    MathSciNet  MATH  Google Scholar 

  26. A. Pinzul, On spectral geometry approach to Horava-Lifshitz gravity: spectral dimension. Class. Quant. Grav. 28, 195,005 (2011). https://doi.org/10.1088/0264-9381/28/19/195005

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Pinzul, Spectral geometry approach to Horava-Lifshitz type theories: gravity and matter sectors in IR regime. PoS CORFU2015, 095 (2016)

    Google Scholar 

  28. J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string in Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2007). https://doi.org/10.1017/CBO9780511816079

  29. E. Prodan, A Computational Non-commutative Geometry Program for Disordered Topological Insulators (Springer, Berlin, 2017)

    Google Scholar 

  30. N.E. Wegge-Olsen, K-theory and C*-algebras: a friendly approach (Oxford Science Publications, Oxford, 1993)

    MATH  Google Scholar 

  31. Wikipedia: 4-manifold—wikipedia, the free encyclopedia (2018). https://en.wikipedia.org/wiki/4-manifold. Last edited on 16 May 2018

Download references

Acknowledgements

FL acknowledges the support of the COST action QSPACE, the INFN Iniziativa Specifica GeoSymQFT and Spanish MINECO under project MDM-2014-0369 of ICCUB (Unidad de Excelencia ‘Maria de Maeztu’).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedele Lizzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lizzi, F., Pinzul, A. (2019). Dimensional Deception for the Noncommutative Torus. In: Marmo, G., Martín de Diego, D., Muñoz Lecanda, M. (eds) Classical and Quantum Physics. Springer Proceedings in Physics, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-030-24748-5_13

Download citation

Publish with us

Policies and ethics