Skip to main content

Towards a Quantum Sampling Theory: The Case of Finite Groups

  • Conference paper
  • First Online:
Classical and Quantum Physics

Abstract

Nyquist-Shannon sampling theorem, instrumental in classical telecommunication technologies, is extended to quantum systems supporting a unitary representation of a finite group G. Two main ideas from the classical theory having natural counterparts in the quantum setting: frames and invariant subspaces, provide the mathematical background for the theory. The main ingredients of classical sampling theorems are discussed and their quantum counterparts are thoroughly analyzed in this simple situation. A few examples illustrating the obtained results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Aldroubi, K. Gröchenig, Non-uniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43, 585–620 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  2. P. Aniello, G. Cassinelli, E. De Vito, A. Levrero, Wavelet transforms and discrete frames associated to semidirect products. J. Math. Phys. 39(8), 3965 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Aniello, V.I. Man’ko, G. Marmo, Frame transforms, star products and quantum mechanics on phase space. J. Phys. A 41(28), 285304 (2008)

    Article  MathSciNet  Google Scholar 

  4. M. Asorey, A. Ibort, G. Marmo, F. Ventriglia, Quantum Tomography twenty years later. Phys. Scr. 90, 074031 (2015)

    Article  ADS  Google Scholar 

  5. D. Barbieri, E. Hernández, J. Parcet, Riesz and frame systems generated by unitary actions of discrete groups. Appl. Comput. Harmon. Anal. 39(3), 369–399 (2015)

    Article  MathSciNet  Google Scholar 

  6. P.R. Burker, P. Jensen, Fundamentals of Molecular Symmetry (Institute of Physics Publishing, 2005)

    Google Scholar 

  7. P.G. Casazza, G. Kutyniok (eds.), Finite Frames: Theory and Applications (Birkhäuser, Boston, 2014)

    Google Scholar 

  8. O. Christensen, An Introduction to Frames and Riesz Bases (Birkhäuser, Boston, 2003)

    Book  Google Scholar 

  9. I. Devetak, A.W. Harrow, A. Winter, A resource framework for quantum Shannon theory. IEEE Trans. Inform. Theory 54(10), 4587–4618 (2008)

    Article  MathSciNet  Google Scholar 

  10. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Group Theory—Application to the Physics of Condensed Matter (Springer, Berlin, 2008)

    MATH  Google Scholar 

  11. H.R. Fernández-Morales, A.G. García, M.A. Hernández-Medina, M.J. Muñoz-Bouzo, On some sampling-related frames in \(U\)-invariant spaces. Abstr. Appl. Anal. 2013, 761620 (2013)

    Google Scholar 

  12. H.R. Fernández-Morales, A.G. García, M.A. Hernández-Medina, M.J. Muñoz-Bouzo, Generalized sampling: from shift-invariant to \(U\)-invariant spaces. Anal. Appl. 13(3), 303–329 (2015)

    Google Scholar 

  13. H.R. Fernández-Morales, A.G. García, M.J. Muñoz-Bouzo, A. Ortega, Finite sampling in multiple generated \(U\)-invariant subspaces. IEEE Trans. Inform. Theory 62(4), 2203–2212 (2016)

    Google Scholar 

  14. A.G. García, Orthogonal sampling formulas: a unified approach. Siam Rev. 42, 499–512 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. A.G. García, M.J. Muñoz-Bouzo, Sampling-related frames in finite \(U\)-invariant subspaces. Appl. Comput. Harmon. Anal. 39, 173–184 (2015)

    Google Scholar 

  16. A.G. García, G. Pérez-Villalón, Dual frames in \({L}^2(0,1)\) connected with generalized sampling in shift-invariant spaces. Appl. Comput. Harmon. Anal. 20(3), 422–433 (2006)

    Google Scholar 

  17. A.G. García, M.A. Hernández-Medina, A. Ibort, Knit product of finite groups and sampling 66 (2018). ArXiv:1806.11481v1 [math.FA]

  18. R.V.L. Hartley, Transmission of Information. Bell Syst. Tech. J. 7, 535–563 (1928)

    Article  Google Scholar 

  19. A. Ibort, V.I. Man’ko, G. Marmo, A. Simoni, F. Ventriglia, An introduction to the tomographic picture of quantum mechanics. Phys. Scr. 79, 065013–42 (2009)

    Google Scholar 

  20. I.M. Isaacs, Finite Group Theory, Graduate Studies in Mathematics, vol. 92 (AMS, Providence, RI, 2008)

    Google Scholar 

  21. S.F.A. Kettle, Symmetry and Structure: Readable Group Theory for Chemists (Wiley, New York, 2007)

    Google Scholar 

  22. A.Y. Kitaev, Quantum computations: algorithms and error correction. Russ. Math. Surv. 52(6), 1191–1249 (1997)

    Article  MathSciNet  Google Scholar 

  23. A.N. Kolmogorov, Stationary sequences in Hilbert space. Boll. Moskow. Gos. Univ. Mat. 2, 1–40 (1941)

    MathSciNet  Google Scholar 

  24. T. Michaeli, V. Pohl, Y.C. Eldar, \(U\)-invariant sampling: extrapolation and causal interpolation from generalized samples. IEEE Trans. Sig. Process. 59(5), 2085–2100 (2011)

    Google Scholar 

  25. H. Nyquist, Certain topics in telegraph transmission theory. Trans. AIEE 47, 617–644 (1928)

    Google Scholar 

  26. R. Penrose, A generalized inverse for matrices. Math. Proc. Camb. Philos. Soc. 51, 406–413 (1955)

    Article  ADS  Google Scholar 

  27. V. Pohl, H. Boche, \(U\)-invariant sampling and reconstruction in atomic spaces with multiple generators. IEEE Trans. Sig. Process. 60(7), 3506–3519 (2012)

    Google Scholar 

  28. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  29. C.E. Shannon, Communications in the presence of noise. Proc. IRE 37, 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  30. W. Sun, X. Zhou, Average sampling in shift-invariant subspaces with symmetric averaging functions. J. Math. Anal. Appl. 287, 279–295 (2003)

    Article  MathSciNet  Google Scholar 

  31. E.P. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, New York, 1959)

    MATH  Google Scholar 

  32. M.M. Wilde, Quantum Information Theory (Cambridge University Press, New York, 2013)

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for Centres of Excellence in RD (SEV-2015/0554). AI would like to thank partial support provided by the MINECO research project MTM2017-84098-P and QUITEMAD+, S2013/ICE-2801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio G. García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García, A.G., Hernández-Medina, M.A., Ibort, A. (2019). Towards a Quantum Sampling Theory: The Case of Finite Groups. In: Marmo, G., Martín de Diego, D., Muñoz Lecanda, M. (eds) Classical and Quantum Physics. Springer Proceedings in Physics, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-030-24748-5_11

Download citation

Publish with us

Policies and ethics