Skip to main content

Salvia miltiorrhiza Epigenetics

  • Chapter
  • First Online:
The Salvia miltiorrhiza Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 564 Accesses

Abstract

Epigenetics refers to the heritable changes in phenotype or gene expression without changes in the underlying DNA sequence. It includes DNA methylation, histone modification, and noncoding RNA regulation. These epigenetic modifications play significant roles in plant growth and development, such as developmental regulation, stress response, and environmental adaption. This chapter reviews the studies on the regulation mechanisms and functions of microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and DNA methylation in Salvia miltiorrhiza.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121(2):207–221

    Article  CAS  PubMed  Google Scholar 

  • Araji S, Grammer TA, Gertzen R, Anderson SD, Mikulic-Petkovsek M, Veberic R, Phu ML, Solar A, Leslie CA, Dandekar AM, Escobar MA (2014) Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiol 164(3):1191–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ, Bowman JL (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13:343–349

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102(33):11928–11933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681

    Article  CAS  PubMed  Google Scholar 

  • Bewick AJ, Schmitz RJ (2017) Gene body DNA methylation in plants. Curr Opin Plant Biol 36:103–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blevins T, Podicheti R, Mishra V, Marasco M, Wang J, Rusch D, Tang H, Pikaard CS (2015) Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis. Elife 4:e09591

    Article  PubMed  PubMed Central  Google Scholar 

  • Boerner S, McGinnis KM (2012) Computational identification and functional predictions of long noncoding RNA in Zea mays. PLoS ONE 7:e43047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohmdorfer G, Rowley MJ, KuciÅ„ski J, Zhu Y, Amies I, Wierzbicki AT (2014) RNA-directed DNA methylation requires stepwise binding of silencing factors to long non-coding RNA. Plant J 79:181–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouché N, Lauressergues D, Gasciolli V, Vaucheret H (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25(14):3347–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonell A, Fahlgren N, Garcia-Ruiz H, Gilbert KB, Montgomery TA, Nguyen T, Cuperus JT, Carrington JC (2012) Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. Plant Cell 24(9):3613–3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardon G, Höhmann S, Nettesheim K, Saedler H, Huijser P (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J 12:367–377

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulfite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui J, You C, Chen X (2017) The evolution of microRNAs in plants. Curr Opin Plant Biol 35:61–67

    Article  CAS  PubMed  Google Scholar 

  • Finnegan EJ, Kovac KA (2000) Plant DNA methyltransferases. Plant Mol Biol 43:189–201

    Article  CAS  PubMed  Google Scholar 

  • Gandía-Herrero F, Jiménez-Atiénzar M, Cabanes J, Escribano J, García-Carmona F (2009) Fluorescence detection of tyrosinase activity on dopamine-betaxanthin purified from Portulaca oleracea (common purslane) flowers. J Agric Food Chem 57(6):2523–2528

    Article  CAS  PubMed  Google Scholar 

  • Gomes AQ, Nolasco S, Soares H (2013) Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci 14(8):16010–16039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53(5):814–827

    Article  CAS  PubMed  Google Scholar 

  • Gramzow L, Theißen G (2019) Plant miRNA conservation and evolution. Methods Mol Biol 1932:41–50

    Article  PubMed  Google Scholar 

  • Griffiths-Jones S (2007) Annotating noncoding RNA genes. Annu Rev Genomics Hum Genet 8:279–298

    Article  CAS  PubMed  Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  CAS  PubMed  Google Scholar 

  • Han Z, Crisp PA, Stelpflug S, Kaeppler SM, Li Q, Springer NM (2018) Heritable epigenomic changes to the maize methylome resulting from tissue culture. Genetics 209(4):983–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1(2):76–80

    Article  PubMed  Google Scholar 

  • Illingworth RS, Bird AP (2009) CpG islands—‘a rough guide’. FEBS Lett 583:1713–1720

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Seo PJ, Kang SK, Park CM (2011) miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Mol Biol 76:35–45

    Article  CAS  PubMed  Google Scholar 

  • Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162

    Article  CAS  PubMed  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862

    Article  CAS  PubMed  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11(3):204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–864

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Google Scholar 

  • Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    Article  CAS  PubMed  Google Scholar 

  • Li C, Lu S (2014) Genome-wide characterization and comparative analysis of R2R3-MYB transcription factors shows the complexity of MYB-associated regulatory networks in Salvia miltiorrhiza. BMC Genom 15:277

    Article  CAS  Google Scholar 

  • Li CF, Pontes O, ElShami M, Henderson IR, Bernatavichute YV, Chan SW, Lagrange T, Pikaard CS, Jacobsen SE (2006) An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126:93–106

    Article  CAS  PubMed  Google Scholar 

  • Li D, Shao F, Lu S (2015) Identification and characterization of mRNA-like noncoding RNAs in Salvia miltiorrhiza. Planta 241:1131–1143

    Article  CAS  PubMed  Google Scholar 

  • Li C, Li D, Li J, Shao F, Lu S (2017) Characterization of the polyphenol oxidase gene family reveals a novel microRNA involved in posttranscriptional regulation of PPOs in Salvia miltiorrhiza. Sci Rep 7:44622

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Li C, Lu S (2018a) Identification and characterization of the cytosine-5 DNA methyltransferase gene family in Salvia miltiorrhiza. PeerJ 6:e4461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Li C, Lu S (2018b) Systematic analysis of DEMETER-like DNA glycosylase genes shows lineage-specific Smi-miR7972 involved in SmDML1 regulation in Salvia miltiorrhiza. Sci Rep 8:7143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Kuma S, Qian W (2018c) Active DNA demethylation: mechanism and role in plant development. Plant Cell Rep 37:77–85

    Article  CAS  PubMed  Google Scholar 

  • Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen SE (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080

    Article  CAS  PubMed  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52(1):133–146

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Huang J, Wang Y, Khanna K, Xie Z, Owen HA, Zhao D (2010) The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. Plant J 62(3):416–428

    Article  CAS  PubMed  Google Scholar 

  • Lu S (2019) De novo origination of MIRNAs through generation of short inverted repeats in target genes. RNA Biol 16(6):846–859

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo H, Zhu Y, Song J, Xu L, Sun C, Zhang X, Xu Y, He L, Sun W, Xu H, Wang B, Li X, Li C, Liu J, Chen S (2014) Transcriptional data mining of Salvia miltiorrhiza in response to methyl jasmonate to examine the mechanism of bioactive compound biosynthesis and regulation. Physiol Plant 152(2):241–255

    Article  CAS  PubMed  Google Scholar 

  • MacIntosh GC, Wilkerson C, Green PJ (2001) Identification and analysis of Arabidopsis expressed sequence tags characteristic of non-coding RNAs. Plant Physiol 127:765–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408

    Article  CAS  PubMed  Google Scholar 

  • Matzke M, Kanno T, Daxinger L, Huettel B, Matzke AJ (2009) RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 21:367–376

    Article  CAS  PubMed  Google Scholar 

  • Mehrtens F, Kranz H, Bednarek P, Weissharr B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138(2):1083–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant microRNAs. Plant Cell 20(12):3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132(18):4107–4118

    Article  CAS  PubMed  Google Scholar 

  • Ong-Abdullah M, Ordway JM, Jiang N, Ooi SE, Kok SY, Sarpan N, Azimi N, Hashim AT, Ishak Z, Rosli SK, Malike FA, Bakar NA, Marjuni M, Abdullah N, Yaakub Z, Amiruddin MD, Nookiah R, Singh R, Low ET, Chan KL, Azizi N, Smith SW, Bacher B, Budiman MA, Van Brunt A, Wischmeyer C, Beil M, Hogan M, Lakey N, Lim CC, Arulandoo X, Wong CK, Choo CN, Wong WC, Kwan YY, Alwee SS, Sambanthamurthi R, Martienssen RA (2015) Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525(7570):533–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW (2002) MicroRNAs in plants. Genes Dev 16(13):1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signaling. Nature 459:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67:183–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafiq S, Li J, Sun Q (2016) Functions of plants long non-coding RNAs. Biochim Biophys Acta 1859(1):155–162

    Article  CAS  PubMed  Google Scholar 

  • Shao F, Lu S (2013) Genome-wide identification, molecular cloning, expression profiling and posttranscriptional regulation analysis of the Argonaute gene family in Salvia miltiorrhiza, an emerging model medicinal plant. BMC Genom 14:512

    Article  CAS  Google Scholar 

  • Shao F, Qiu D, Lu S (2015) Comparative analysis of the Dicer-like gene family reveals loss of miR162 target site in SmDCL1 from Salvia miltiorrhiza. Sci Rep 5:9891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi P, Wang Y, Jin L, Zhang D, Zhao Z, Cao H, Lei X (2019) Research progress on DNA methylation during plant tissue culture. Chin J Trop Crops 40(1):199–207

    Google Scholar 

  • Song JY, Luo HM, Li CF, Sun C, Xu J, Chen SL (2013) Salvia miltiorrhiza as medicinal model plant. Acta Pharm Sin 48(7):1099–1106

    Google Scholar 

  • Spanudakis E, Jackson S (2014) The role of microRNAs in the control of flowering time. J Exp Bot 65(2):365–380

    Article  CAS  PubMed  Google Scholar 

  • Steiner U, Schliemann W, Böhm H, Strack D (1999) Tyrosinase involved in betalain biosynthesis of higher plants. Planta 208:114–124

    Article  CAS  Google Scholar 

  • Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochemistry 62:247–269

    Article  CAS  PubMed  Google Scholar 

  • Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50(4):660–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, Johnson L, Patel DJ, Jacobsen SE (2014) Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 21:64–72

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Wang D, Gao X, Liu J (2018) Research advance on plant long noncoding RNAs. Biotechnol Bull 34(10):1–10

    Google Scholar 

  • Tirumalai V, Swetha C, Nair A, Pandit A, Shivaprasad PV (2019) miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes. J Exp Bot. https://doi.org/10.1093/jxb/erz264

    Article  PubMed  PubMed Central  Google Scholar 

  • To TK, Saze H, Kakutani T (2015) DNA methylation within transcribed regions. Plant Physiol 168(4):1219–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaucheret H, Vazquez F, Crété P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18(10):1187–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Morris-Natschke SL, Lee KH (2007) New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev 27(1):133–148

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang X, Deng W, Fan X, Liu TT, He G, Chen R, Terzaghi W, Zhu D, Deng XW (2014a) Genomic features and regulatory roles of intermediate-sized non-coding RNAs in Arabidopsis. Mol Plant 7:514–527

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wu B, Chen C, Lu S (2014b) Identification of mRNA-like non-coding RNAs and validation of a mighty one named MAR in Panax ginseng. J Integr Plant Biol 57(3):256–270

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Li C, Lu S (2017) Origin and evolution of MIR1444 genes in Salicaceae. Sci Rep 7:39740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen J, Parker BJ, Weiller GF (2007) In silico identification and characterization of mRNA-like noncoding transcripts in Medicago truncatula. Silico Biol 7:485–505

    CAS  Google Scholar 

  • Wierzbicki AT, Haag JR, Pikaard CS (2008) Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135:635–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wierzbicki AT, Ream TS, Haag JR, Pikaard CS (2009) RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat Genet 41:630–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Park Y, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Li Y, Yan H, Ma Y, Luo H, Yuan L, Chen S, Lu S (2012) Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea. BMC Genom 13:15

    Article  CAS  Google Scholar 

  • Wu HJ, Wang ZM, Wang M, Wang XJ (2013) Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol 161:1875–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2(5):E104

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X, Jiang Q, Ma X, Ying Q, Shen B, Qian Y, Song H, Wang H (2014) Deep sequencing identifies tissue-specific microRNAs and their target genes involving in the biosynthesis of tanshinones in Salvia miltiorrhiza. PLoS ONE 9(11):e111679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Peters RJ, Weirather J, Luo H, Liao B, Zhang X, Zhu Y, Ji A, Zhang B, Hu S, Au KF, Song J, Chen S (2015) Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J 82(6):951–961

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Song J, Luo H, Zhang Y, Li Q, Zhu Y, Xu J, Li Y, Song C, Wang B, Sun W, Shen G, Zhang X, Qian J, Ji A, Xu Z, Luo X, He L, Li C, Sun C, Yan H, Cui G, Li X, Li X, Wei J, Liu J, Wang Y, Hayward A, Nelson D, Ning Z, Peters RJ, Qi X, Chen S (2016a) Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Mol Plant 9(6):949–952

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Ji A, Song J, Chen S (2016b) Genome-wide analysis of auxin response factor gene family members in medicinal model plant Salvia miltiorrhiza. Biol Open 5(6):848–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan KS, Yan S, Farooq A, Han A, Zeng L, Zhou MM (2003) Structure and conserved RNA binding of the PAZ domain. Nature 426:468–474

    Article  CAS  PubMed  Google Scholar 

  • Yi X, Zhang Z, Ling Y, Xu W, Su Z (2015) PNRD: a plant non-coding RNA database. Nucleic Acids Res 43(Database issue):D982–D989

    Google Scholar 

  • Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai J, Bischof S, Wang H, Feng S, Lee TF, Teng C, Chen X, Park SY, Liu L, Gallego-Bartolome J, Liu W, Henderson IR, Meyers BC, Ausin I, Jacobsen SE (2015) A one precursor one siRNA model for Pol IV-dependent siRNA biogenesis. Cell 163:45–55

    Article  CAS  Google Scholar 

  • Zhang H, Zhu JK (2011) RNA-directed DNA methylation. Curr Opin Plant Biol 14:142–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhu JK (2012) Active DNA demethylation in plants and animals. Cold Spring Harb Symp Quant Biol 77:161–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Wu B, Zhao D, Li C, Shao F, Lu S (2014) Genome-wide analysis and molecular dissection of the SPL gene family in Salvia miltiorrhiza. J Integr Plant Biol 56:38–50

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Tian Y, Zhang J, Shu L, Yang S, Wang W, Sheng J, Dong Y, Chen W (2015) Hybrid de novo genome assembly of the Chinese herbal plant danshen (Salvia miltiorrhiza Bunge). Gigascience 4:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Jin W, Zhu X, Liu L, He Z, Yang S, Liang Z, Yan X, He Y, Liu Y (2016) Identification and characterization of Salvia miltiorrhizain miRNAs in response to replanting disease. PLoS ONE 11(8):e0159905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Tao Y, Liao Q (2017) Long noncoding RNA: a crosslink in biological regulatory network. Brief Bioinform 19(5):930–945

    Article  CAS  Google Scholar 

  • Zhang H, Lang Z, Zhu JK (2018) Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol 19:489–506

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Palanca AMS, Law JA (2019) Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family. Nat Genet 50(6):865–873

    Article  CAS  Google Scholar 

  • Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81773836) and the CAMS Innovation Fund for Medical Sciences (CIFMS) (2016-I2M-3-016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanfa Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qiu, X., Zhou, H., Lu, S. (2019). Salvia miltiorrhiza Epigenetics. In: Lu, S. (eds) The Salvia miltiorrhiza Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-24716-4_6

Download citation

Publish with us

Policies and ethics