Skip to main content

Pulse Decomposition Analysis Techniques

  • Chapter
  • First Online:
The Handbook of Cuffless Blood Pressure Monitoring

Abstract

Pulse decomposition analysis (PDA) uses a pulse contour analysis approach to quantify hemodynamic parameters such as blood pressure and arterial tone changes. It is based on the concept that two central reflection sites are responsible for the shape of the pressure pulse envelope of the upper body.

The two reflection sites, one located at the aortic juncture of thoracic and abdominal aortas, and the other at the iliac bifurcation, reflect the primary left ventricular ejection pulse to give rise to two reflected and two re-reflected component pulses. Within the pulse pressure envelope of each cardiac cycle these five component pulses arrive sequentially in the arterial periphery. Quantification of the temporal and amplitudinal behavior of the first three component pulses establishes a formalism that can be used to monitor certain hemodynamic states and their changes.

The observational evidence and motivation for PDA are presented, as are pulse modeling approaches, practical implementation considerations and physiological confounders. Benchmark and clinical study comparisons are provided. The current status and outlook of the CareTaker physiological monitor, which utilizes PDA as its operational principle and has demonstrated compliance with several regulatory standards, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Rourke MF, Yaginuma T. Wave reflections and the arterial pulse. Arch Intern Med. 1984;144(2):366–71.

    Article  Google Scholar 

  2. Quick CM, Berger DS, Noordergraaf A. Constructive and destructive addition of forward and reflected arterial pulse waves. Am J Physiol Heart Circ Physiol. 2001;280(4):H1519–27.

    Article  CAS  Google Scholar 

  3. Söderström S, Sellgren J, Pontén J. Aortic and radial pulse contour: different effects of nitroglycerin and prostacyclin. Anesth Analg. 1999;89(3):566–72.

    Article  Google Scholar 

  4. Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A, Larsen J. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann Biomed Eng. 2000;28(11):1281–99.

    Article  CAS  Google Scholar 

  5. McDonald DA. Blood flow in arteries. 4th ed. London: Arnold; 1998. p. 177.

    Google Scholar 

  6. Latham RD, et al. Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation. 1985;72:1257–69.

    Article  CAS  Google Scholar 

  7. Kriz J, et al. Force plate measurement of human hemodynamics. http://arxiv.org/abs/physics/0507135.

  8. Greenwald SE, Carter AC, Berry CL. Effect of age on the in vitro reflection coefficient of the aortoiliac bifurcation in humans. Circulation. 1990;82(1):114–23.

    Article  CAS  Google Scholar 

  9. Korteweg DJ. Über die Fortpflanzungsgesschwindigkeit des Schalles in elastischen Rohren. Ann Phys Chem. 1878;5:520–37.

    Google Scholar 

  10. Hallock P, Benson IC. Studies on the elastic properties of human isolated aorta. J Clin Investig. 1937;16:595–602.

    Article  CAS  Google Scholar 

  11. Mukkamala R, Hahn JO, Inan OT, Mestha LK, Kim CS, Töreyin H, Kyal S. Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans Biomed Eng. 2015;62(8):1879–901.

    Article  Google Scholar 

  12. Anliker M, Histand MB, Ogden E. Dispersion and attenuation of small artificial pressure waves in the canine aorta. Circ Res. 1968;23(4):539–51.

    Article  CAS  Google Scholar 

  13. Couceiro R, Carvalho P, Paiva RP, Henriques J, Quintal I, Antunes M, Muehlsteff J, Eickholt C, Brinkmeyer C, Kelm M, Meyer C. Assessment of cardiovascular function from multi-Gaussian fitting of a finger Photoplethysmogram. Physiol Meas. 2015;36(9):1801–25.

    Article  Google Scholar 

  14. O’Rourke MF, Mancia G. Arterial stiffness. J Hypertens. 1999;17(1):1–4.

    Article  Google Scholar 

  15. Takazawa K, Tanaka N, Fujita M, Matsuoka O, Saiki T, Aikawa M, Tamura S, Ibukiyama C. Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform. Hypertension. 1998;32(2):365–70.

    Article  CAS  Google Scholar 

  16. Lantelme P, Mestre C, Lievre M, Gressard A, Milon H. Heart rate: an important confounder of pulse wave velocity assessment. Hypertension. 2002;39(6):1083–7.

    Article  CAS  Google Scholar 

  17. O’Rourke MF, Kelley RP, Avolio AP. The arterial pulse. Philadelphia: Lea & Febiger; 1992.

    Google Scholar 

  18. Esper SA, Pinsky MR. Arterial waveform analysis. Best Pract Res Clin Anaesthesiol. 2014;28(4):363–80.

    Article  Google Scholar 

  19. Chia CW, Saul JP, Lee CC, Mark RG. Monitoring the changes in peripheral vascular resistance using the shape of the radial blood pressure pulse. Comput Cardiol. 1992;19:567–70.

    Article  Google Scholar 

  20. Irwin Gratz DO, Edward Deal DO, Francis Spitz MD, Baruch MC, Allen E, Seaman JE, Pukenas E, Jean S. Continuous non-invasive finger cuff CareTaker® comparable to invasive intra-arterial pressure in patients undergoing major intra-abdominal surgery. BMC Anesthesiol. 2017;17:48.

    Article  Google Scholar 

  21. Baruch MC, Kalantari K, Gerdt DW, Adkins CM. Validation of the pulse decomposition analysis algorithm using central arterial blood pressure. Biomed Eng Online. 2014;13:96.

    Article  Google Scholar 

  22. Phillips AA, Burr J, Cote AT, Foulds HJ, Charlesworth S, Bredin SS, Warburton DE. Comparing the Finapres and CareTaker systems for measuring pulse transit time before and after exercise. Int J Sports Med. 2012;33(2):130–6.

    Article  CAS  Google Scholar 

  23. Williams B, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113(9):1213–25.

    Article  CAS  Google Scholar 

  24. Low PA. “Laboratory evaluation of autonomic function.” Clinical autonomic disorders. 2nd ed. Philadelphia: Lippincott-Raven; 1997. p. 186–7.

    Google Scholar 

  25. Baruch MC, Warburton DE, Bredin SS, Cote A, Gerdt DW, Adkins CM. Pulse decomposition analysis of the digital arterial pulse during hemorrhage simulation. Nonlinear Biomed Phys. 2011;5(1):1.

    Article  Google Scholar 

  26. Gratz I, et al. A predictive model for the development of hypotension following spinal anesthesia for elective cesarean section patients based on arterial stiffness (AS) calculated by a continuous blood pressure device (CareTaker). American Society of Anesthesiologists Annual Meeting 2018, Abstract Number: A3033.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin C. Baruch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baruch, M.C. (2019). Pulse Decomposition Analysis Techniques. In: Solà, J., Delgado-Gonzalo, R. (eds) The Handbook of Cuffless Blood Pressure Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-030-24701-0_7

Download citation

Publish with us

Policies and ethics