Skip to main content

Cash Crops: Synseed Production, Propagation, and Conservation

  • Chapter
  • First Online:
Book cover Synthetic Seeds

Abstract

Advancement in encapsulation technique has provided excellent opportunity for the improvement of crops, trees, and several other plant species. The application of encapsulation technology in the field of agriculture opens new vistas for plant propagation, conservation, and delivery of germplasm. The synthetic seed was a promising application in the propagation of vegetatively propagated and polyploidy species that are hard to propagate. In majority of the cash crop, propagation through seed is unsuccessful due to heterozygosity, low germination of seed, and absence of normal endosperm. Considering these problems, a great interest has been developed to use encapsulation techniques for the propagation, conservation, and accelerated germplasm exchange. The proposed study deals with a piece of up-to-date information on the synseed development in various cash crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelnour-Esquivel A, Mora A, Villalobos V (1992) Cryopreservation of zygotic embryos of Musa acuminata (AA) and Musa balbisiana (BB). CryoLetters 13:159–164

    Google Scholar 

  • Antonietta GM, Emmanuele P, Alvaro S (1999) Effect of encapsulation on Citrus reticulata Blanco, somatic embryo conversion. Plant Cell Tissue Organ Cult 55:235–237

    Article  Google Scholar 

  • Antonietta GM, Ahmad HI, Maurizio M, Alvaro S (2007) Preliminary research on conversion ofencapsulated somatic embryos of Citrus reticulata Blanco, cv. MandarinoTardivo diCiaculli. Plant Cell Tissue Organ Cult 88:117–120

    Article  Google Scholar 

  • Ara H, Jaiswal U, Jaiswal VS (2000) Synthetic seed: prospects and limitations. Curr Sci 78:1438–1444

    Google Scholar 

  • Arun Kumar MB, Vakeswaran V, Krishnasamy V (2005) Enhancement of synthetic seed conversion to seedlings in hybrid rice. Plant Cell Tissue Organ Cult 81:97–100

    Article  CAS  Google Scholar 

  • Banerjee N, De Langhe E (1985) A tissue cultures technique for rapid clonal propagation and storage under minimal growth conditions of Musa (banana and plantain). Plant Cell Rep 4:351–354

    Article  CAS  PubMed  Google Scholar 

  • Bapat VA, Mhatre M (2005) Bioencapsulation of somatic embryos in woody plants. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Dordrecht, pp 539–552

    Chapter  Google Scholar 

  • Bapat VA, Mhatre M, Rao PS (1987) Propagation of Morusindica L. (mulberry) by encapsulatedshoot buds. Plant Cell Rep 6:393–395

    Article  CAS  PubMed  Google Scholar 

  • Chaudhury R, Malik SK (2003) Strategies for achieving short-, medium- and long-term conservation of desiccation-sensitive seeds. In: Chaudhury R, Pandey R, Malik SK, Mal B (eds) In vitro conservation and cryopreservation of tropical fruit species. IPGRI Office for South Asia and NBPGR, New Delhi, pp 191–200

    Google Scholar 

  • Corrie S, Tandon P (1993) Propagation of Cymbidium giganteum wall through high frequencyconversion of encapsulated protocorms under in vivo and in vitro conditions. Indian J Exp Biol 31:61–64

    Google Scholar 

  • Cote FX, Goue O, Domergue R, Panis B, Jenny C (2002) In-field behavior of banana plants (Musa AA sp.) obtained after regeneration of cryopreserved embryogenic cell suspensions. CryoLetters 21:19–24

    Google Scholar 

  • Das DK, Nirala NK, Reddy MK, Sopory SK, Upadhyaya KC (2006) Encapsulated somatic embryos of grape (Vitis vinifera L.): an efficient way for storage and propagation of pathogen free plant material. Vitis 45:179–184

    CAS  Google Scholar 

  • Das DK, Rahman A, Kumari D, Kumari N (2016) Synthetic seed preparation, germination and plantlets regeneration of Litchi (Litchi chinensis Sonn.). Am J Plant Sci 7:1395–1406

    Article  CAS  Google Scholar 

  • Datta SK, Potrykus I (1989) Artificial seeds in barley: encapsulation of microspore-derived embryos. Theor Appl Genet 77:820–824

    Article  CAS  PubMed  Google Scholar 

  • Doussoh AM, Dangou JS, Agbidinoukoun A, Houedjissin SS, Ahanhanza C (2018) The use of encapsulation-dehydration technique for short-term preservation of endangered sweet potato landraces (Ipomoea batatas Lam) from Benin. J Plant Sci 6:93–100

    Google Scholar 

  • Engleman F (2003) Cryopreservation techniques. In: Chaudhury R, Pandey R, Malik SK, Mal B (eds) In vitro conservation and cryopreservation of tropical fruit species. IPGRI Office for South Asia and NBPGR, New Delhi, pp 145–154

    Google Scholar 

  • Faisal M, Anis M (2007) Regeneration of plants from alginate-encapsulated shoots of Tylophora indica (Burm. f.) Merrill, an endangered medicinal plant. J Hortic Sci Biotechnol 82:351–354

    Article  CAS  Google Scholar 

  • Gamez-Pastrana R, Martínez-Ocampo Y, Beristain CI, Gonzalez-Arnao MT (2004) An improved cryopreservation protocol for pineapple apices using encapsulation–vitrification. CryoLetters 25:405–414

    CAS  PubMed  Google Scholar 

  • Ganapathi TR, Suprasanna P, Bapat VA, Rao PS (1992) Propagation of banana through encapsulated shoot tips. Plant Cell Rep 11:571–575

    Article  CAS  PubMed  Google Scholar 

  • Ganapathi TR, Srinivas L, Supranna P, Bapat VA (2001) Regeneration of plants from alginate encapsulated somatic embryos of banana cv. Rasthali (Musa spp. AAB group). In Vitro Cell Dev Biol 37:178–181

    Article  CAS  Google Scholar 

  • Gangopadhyay G, Bandyopadhyay T, Poddar R, Gangopadhyay SB, Mukherjee KK (2005) Encapsulation of pineapple micro shoots in alginate beads for temporary storage. Curr Sci 88:972–977

    CAS  Google Scholar 

  • Gantait S, Kundu S, Ali N, Sahu NC (2015) Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiol Plant 37:1–12

    Article  CAS  Google Scholar 

  • Gonzalez-Arnao MT, Engelmann F, Urra C, Morenza M, Rios A (1998) Cryopreservation of citrus apices using the encapsulation-dehydration technique. CryoLetters 19:177–182

    Google Scholar 

  • Gonzalez-Arnao MT, Juarez J, Ortega C, Navarro L, Duran-Vila N (2003) Cryopreservation of ovules and somatic embryos of citrus using the encapsulation–dehydration technique. CryoLetters 24:85–94

    CAS  PubMed  Google Scholar 

  • Gray DJ, Meredith CP (1992) Grape. In: Hammerschlag FA, Litz RE (eds) Biotechnology of perennial fruit crops. Biotechnology in agriculture. CAB International, Wallingford, pp 229–262

    Google Scholar 

  • Guerra MP, Dal Vesco LL, Ducroquet JPHJ, Nodari RO, Reis MS (2001) Somatic embryogenesis in Goiabeira serrana: genotype response, auxinic shock and synthetic seeds. Braz J Plant Physiol 13:117–128

    Google Scholar 

  • Gupta S, Mandal BB (2003) In vitro methods for PGR conservation: principles and prospects. In: Chaudhury R, Pandey R, Malik SK, Mal B (eds) In vitro conservation and cryopreservation of tropical fruit species. IPGRI Office for South Asia and NBPGR, New Delhi, pp 71–80

    Google Scholar 

  • Hegde V, Makeshkumar T, Sheela MN, Chandra CV, Koundinya AVV, Anila SR, Muthuraj R, Darshan S (2016) Production of synthetic seed in Cassava (Manihot esculenta Crantz). J Root Crops 42:5–9

    Google Scholar 

  • Hu G, Dong N, Zhou Y, Ye W, Yu S (2015) In vitro regeneration protocol for synthetic seed production in upland cotton (Gossypium hirsutum L.). Plant Cell Tissue Organ Cult 123:673–679

    Article  CAS  Google Scholar 

  • Jung SJ, Yoon ES, Jeong JH, Choi YE (2004) Enhanced post-germinative growth of encapsulated somatic embryos of Siberian ginseng by carbohydrate addition to the encapsulation matrix. Plant Cell Rep 23:365–370

    Article  CAS  PubMed  Google Scholar 

  • Khan IM, Ahmad N, Anis M, Alatar AA, Faisal M (2018) In vitro conservation strategies for the Indian willow (Salix tetrasperma Roxb.), a vulnerable tree species via propagation through synthetic seed. Biocatal Agric Biotechnol 16:17–21

    Article  Google Scholar 

  • Kitto SL, Janick J (1982) Polyox as an artificial seed coat for a sexual embryos. Hortic Sci 17:448

    Google Scholar 

  • Kumar MBA, Vakeswaran V, Krishnasamy V (2005) Enhancement of synthetic seed conversion to seedlings in hybrid rice. Plant Cell Tissue Organ Cult 81:97–100

    Article  CAS  Google Scholar 

  • Kundu S, Salma U, Ali MN, Mandal N (2018) Conservation, ex vitro direct regeneration, and genetic uniformity assessment of alginate-encapsulated nodal cuttings of Sphagneticola calendulacea (L.) Pruski. Acta Physiol Plant 2:40–53

    Google Scholar 

  • Lata H, Chandra S, Khan IA, Elsohly MA (2009) Propagation through alginate encapsulation of axillary bud of Cannabis sativa L.- an important medicinal plant. Physiol Mol Biol Plants 15:80–86

    Article  Google Scholar 

  • Litz RE, Jaiswal VS (1991) Micropropagation of tropical and subtropical fruits. In: Debergh PC, Zimmerman RH (eds) Micropropagation. Kluwer Academic, Dordrecht, pp 247–263

    Chapter  Google Scholar 

  • Malik SK, Chaudhury R (2006) The cryopreservation of embryonic axes of two wild and endangered Citrus species. Plant Genet Resour 4:204–209

    Article  Google Scholar 

  • Mandal J, Pattnaik S, Chand PK (2000) Alginate encapsulation of axillary buds of Ocimum americanum L. (hoary basil), O. basilicum L. (sweet basil), O. gratissimum L. (shrubby basil), and O. sanctum (sacred basil). In Vitro Cell Dev Biol Plant 36:287–292

    Article  CAS  Google Scholar 

  • Micheli M, Hafiz IA, Standardi A (2007) Encapsulation of in vitro-derived explants of olive (Olea europaea L. cv. Moraiolo) II. Effects of storage on capsule and derived shoots performance. Sci Hortic 113:286–292

    Article  Google Scholar 

  • Murashige T (1977) Plant cell and organ cultures as horticultural practices. Acta Hortic 78:17

    Article  Google Scholar 

  • Naik SK, Chand PK (2006) Nutrient-alginate encapsulation of in vitro nodal segments of pomegranate (Punica granatum L.) for germplasm distribution and exchange. Sci Hortic 108:247–252

    Article  CAS  Google Scholar 

  • Niino T, Sakai A (1992) Cryopreservation of alginate coated in vitro grown shoot tips of apple, pear and mulberry. Plant Sci 87:199–206

    Article  CAS  Google Scholar 

  • Niino T, Sakai A, Yakuwa H (1992) Cryopreservation of dried shoot tips of mulberry winter buds and subsequent plant regeneration. Cryobiol Lett 13:51–58

    Google Scholar 

  • Onishi N, Sakamoto Y, Hirosawa T (1994) Synthetic seeds as an application of mass production of somatic embryos. Plant Cell Tissue Organ Cult 39:137–145

    Article  Google Scholar 

  • Panis B, Withers LA, De Langhe E (1990) Cryopreservation of Musa suspension cultures and subsequent regeneration of plants. CryoLetters 11:337–350

    Google Scholar 

  • Panis B, Totté N, Van Nimmen K, Withers LA, Swennen R (1996) Cryopreservation of banana (Musa spp.) meristem cultures after preculture on sucrose. Plant Sci 121:95–106

    Article  CAS  Google Scholar 

  • Pattnaik SK, Sahoo Y, Chand PK (1995) Efficient plant retrieval from alginate-encapsulated vegetative buds of mature mulberry trees. Sci Hortic 61:227–239

    Article  Google Scholar 

  • Plessis P, Leddet C, Collas A, Dereuddre J (1993) Cryopreservation of Vitis vinifera L. cv. Chardonnay shoot tips by encapsulation–dehydration: effect of pretreatment, cooling and postculture conditions. CryoLetters 14:309–320

    Google Scholar 

  • Prakash AV, Nair DS, Alex S, Soni KB, Viji MM, Reghunath BR (2018) Calcium alginate encapsulated synthetic seed production in Plumbago rosea L. for germplasm exchange and distribution. Physiol Mol Biol Plants 24:963–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai MK, Jaiswal VS, Jaiswal U (2008) Alginate-encapsulation of nodal segments of guava (Psidium guajava L.) for germplasm exchange and distribution. J Hortic Sci Biotechnol 3:569–573

    Article  Google Scholar 

  • Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaisawal U (2009) The encapsulation technology in fruit plants- a review. Biotechnol Adv 27:1–9

    Article  CAS  Google Scholar 

  • Rao PS, Suprasanna P, Ganapathi TR, Bapat VA (1998) Synthetic seeds: concepts, methods and application. In: Srivastava PV (ed) Plant tissue culture and molecular biology. Narosa, New Delhi, pp 607–619

    Google Scholar 

  • Rathore MS, Kheni J (2017) Alginate encapsulation and in vitro plantlet regeneration in critically endangered medicinal plant, Withania coagulans (stocks) Dunal. Proc Natl Acad Sci India 1:129–113

    Google Scholar 

  • Redenbaugh K, Walker K (1990) Role of artificial seeds in alfalfa breeding. In: Bhojwani SS (ed) Plant tissue culture: applications and limitations. Developments in crop science. Elsevier, Amsterdam, pp 102–135

    Chapter  Google Scholar 

  • Redenbaugh K, Nichol J, Kossler ME, Paasch BD (1984) Encapsulation of somatic embryos forartificial seed production. In Vitro Cell Dev Biol Plant 20:256–257

    Google Scholar 

  • Redenbaugh K, Slade D, Viss PR, Fujii JA (1987) Encapsulation of somatic embryos in synthetic seed coats. Hortic Sci 22:803–809

    Google Scholar 

  • Rout GR, Das G, Samantary S, Das P (2001) Micropropagation of Plumbago zeylanica L., by encapsulated nodal explants. J Hortic Sci Biotechnol 76:24–29

    Article  Google Scholar 

  • Saiprasad GVS (2001) Artificial seeds and their application. Resonance 6:39–47

    Article  Google Scholar 

  • Shaheen A, Shahzad A (2015) Nutrient encapsulation of nodal segments of an endangered white cedar for studies of regrowth, short term conservation and ethylene inhibitors influenced ex vitro rooting. Ind Crop Prod 69:204–211

    Article  CAS  Google Scholar 

  • Sharma S, Shahzad A, Teixeira da Silva JA (2013) Synseed technology – a complete synthesis. Biotechnol Adv 31:186–207

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Sharma M, Varshney R, Agarwal SS, Bansal KC (2006) Plant regeneration from alginate-encapsulated shoot tips of Phyllanthus amarus Schum and Thonn, a medicinally important plant species. In Vitro Cell Dev Biol Plant 42:109–113

    Article  CAS  Google Scholar 

  • Singh B, Sharma S, Rani G, Virk GS, Zaidi AA, Nagpal A (2007) In vitro response of encapsulated and non-encapsulated somatic embryos of Kinnow mandarin (Citrus nobilis Lour x C. deliciosa Tenora). Plant Biotechnol Rep 1:101–107

    Article  Google Scholar 

  • Soneji JR, Rao PS, Mhatre M (2002) Germination of synthetic seeds of pine apple (Ananas comosus L. Merr.). Plant Cell Rep 20:891–894

    Article  CAS  Google Scholar 

  • Suprasanna P, Anupama S, Ganapathi TR, Bapat VA (2001) In vitro growth and development of encapsulated shoot tips of different banana and plantain cultivars. J New Seeds 3:19–25

    Article  Google Scholar 

  • Thobunluepop P, Pawelzik E, Vearasilp S (2009) Possibility of sweet corn synthetic seed production. Pak J Biol Sci 12:1085–1089

    Article  CAS  PubMed  Google Scholar 

  • Wang QC, Gafny R, Sahar N, Sela I, Mawassi M, Tanne E (2002) Cryopreservation of grapevine (Vitis vinifera L.) embryogenic cell suspensions and subsequent plant regeneration by encapsulation–dehydration. Plant Sci 162:551–558

    Article  CAS  Google Scholar 

  • Wang QC, Mawassi M, Sahar N, Li P, Violeta CT, Gafny R (2004) Cryopreservation of grapevine (Vitis spp.) embryogenic cell suspensions by encapsulation-vitrification. Plant Cell Tissue Organ Cult 77:267–275

    Article  CAS  Google Scholar 

  • White PR (1939) Potentially unlimited growth of excised plant callus in an artificial medium. Am J Bot 26:59–56

    Article  Google Scholar 

  • Wu YJ, Hunag XL, Xiao JN, Li XJ, Zhou MD, Engelmann F (2003) Cryopreservation of mango (Mangifera indica L.) embryogenic cultures. CryoLetters 24:303–314

    PubMed  Google Scholar 

  • Zhao Y, Wu Y, Engelmann F, Zhou M (2001) Cryopreservation of axillary buds of grape (Vitis vinifera) in vitro plants. CryoLetters 22:321–328

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support as Junior Research Fellow under DST-PURSE program, India, is highly acknowledged to ZA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Shahzad .

Editor information

Editors and Affiliations

Ethics declarations

There is no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, Z., Shahzad, A. (2019). Cash Crops: Synseed Production, Propagation, and Conservation. In: Faisal, M., Alatar, A. (eds) Synthetic Seeds . Springer, Cham. https://doi.org/10.1007/978-3-030-24631-0_8

Download citation

Publish with us

Policies and ethics