Skip to main content

Somatic Embryogenesis and Synthetic Seed Technology of Curcuma spp.

  • Chapter
  • First Online:
Synthetic Seeds

Abstract

Curcuma is a unique spice crop and sterile triploid plant. The rhizomes are used for vegetative propagation and sold for consumption. These rhizomes are highly damaged by biotic and abiotic stress. Alternative approaches of synthetic seed technology will allow the mass propagation for commercial utilization. Execution of this technology requires manipulation of in vitro system for large-scale production of viable propagules. Somatic embryogenesis is the best regeneration system for rapid and true-to-type multiplication of elite and desirable plant species; it offers reduction of time, easy storage, and direct delivery to the field. This chapter contributes a methodology for encapsulation of somatic embryos by optimization of sodium alginate concentration and exposure time in calcium chloride solution. In addition to that, germination medium condition including medium strength, sucrose concentration, light/dark incubation period, and storage conditions were also noticed for the efficient storability of synthetic seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

BA:

6-Benzyladenine

CaCl2.2H2O:

Calcium chloride

GA3 :

Gibberellic acid

MS medium:

Murashige and Skoog, 1962

References

  • Aitken-Christie J, Kozai T, Smith MAL (1995) Glossary. In: Aitken-Christie J, Kozai T, Smith MAL (eds) Automation and environmental control in plant tissue culture. Kluwer, Dordrecht, pp 9–12

    Chapter  Google Scholar 

  • Anandan R, Sudhakar D, Balasubramanian P, Gutieǐrrez-Mora A (2012) In vitro somatic embryogenesis from suspension cultures of Carica papaya L. Sci Hortic 136:43–49

    Article  CAS  Google Scholar 

  • Ara H, Jaiswal U, Jaiswal VS (1999) Germination and plantlet regeneration from encapsulated somatic embryos of mango (Mangifera indica L.). Plant Cell Rep 19:166–170

    Article  CAS  PubMed  Google Scholar 

  • Ara H, Jaiswal U, Jaiswal VS (2000) Synthetic seed: prospects and limitations. Curr Sci 78:1438–1444

    Google Scholar 

  • Ball ST, Zhou H, Konzak CF (1993) Influence of 2,4-D, IAA, and duration of callus induction in anther culture of spring wheat. Plant Sci 90:195–200

    Article  CAS  Google Scholar 

  • Bapat VA, Mhatre M (2005) Bioencapsulation of somatic embryos in woody plants. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Amsterdam, pp 539–552

    Chapter  Google Scholar 

  • Borkind C, Choi JH, Jin Z, Franz G, Hatzopoupos P, Chorneaau R, Bonas U, Pelegri F, Sung ZR (1988) Developmental regulation of embryogenic genes in plants. Proc Natl Acad Sci U S A 85:6399–6503

    Article  Google Scholar 

  • Cheruvathur MK, Najeeb N, Thomas TD (2013) In vitro propagation and conservation of Indian sarsaparilla, Hemidesmus indicus L. R. Br. through somatic embryogenesis and synthetic seed production. Acta Physiol Plant 35:771–779

    Article  CAS  Google Scholar 

  • Cordeiro SZ, Simas NK, Henriques AB, Sato A (2014) In vitro conservation of Mandevilla moricandiana (Apocynaceae): short-term storage and encapsulation–dehydration of nodal segments. In Vitro Cell Dev Biol Plant 50:326–336

    Article  CAS  Google Scholar 

  • Cousins M, Adelberg J, Chen F, Rieck J (2007) Antioxidant capacity of fresh and dried rhizomes from four clones of turmeric (Curcuma longa L.) grown in vitro. Ind Crop Prod 25:129–135

    Article  Google Scholar 

  • Dam A, Paul S, Bandyopadhyay TK (2010) Direct somatic embryogenesis and plant regeneration from leaf explants of Limonium sinensis (Girard) Kuntze. Sci Hortic 126:253–260

    Article  CAS  Google Scholar 

  • Franklin G, Arvinth S, Sheeba CJ, Kanchana M, Subramonian N (2006) Auxin pretreatment promotes regeneration of sugarcane (Saccharum spp. hybrids) midrib segment explants. Plant Growth Regul 50:111–119

    Article  CAS  Google Scholar 

  • Gantait S, Sinniah UR (2013) Storability, post-storage conversion and genetic stability assessment of alginate-encapsulated shoot tips of monopodial orchid hybrid Aranda Wan Chark Kuan ‘Blue’ X Vanda coerulea Grifft. Ex. Lindl. Plant Biotechnol Rep 7:257–266

    Article  Google Scholar 

  • Gantait S, Bustam S, Sinniah UR (2012) Alginate-encapsulation, short-term storage and plant regeneration from protocorm-like bodies of Aranda Wan Chark Kuan ‘Blue’ x Vanda coerulea Grifft. ex. Lindl. (Orchidaceae). Plant Growth Regul 68:303–311

    Article  CAS  Google Scholar 

  • Germanà MA, Micheli M, Chiancone B, Macaluso L, Standardi A (2011) Organogenesis and encapsulation of in vitro-derived propagules of Carrizo citrange [Citrus sinensis (L.) Osb. × Poncirius trifoliata (L.) Raf]. Plant Cell Tissue Organ Cult 106:299–307

    Article  Google Scholar 

  • Gholap AS, Bandyopadhyay C (1984) Characterization of mango-like aroma in Curcuma amada Roxb. J Agric Food Chem 32:57–59

    Article  CAS  Google Scholar 

  • Ghosh B, Sen S (1994) Plant regeneration from alginate encapsulated somatic embryos of Asparagus cooperi ‘Baker’. Plant Cell Rep 13:381–385

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Zhang Z (2005) Establishment and plant regeneration of somatic embryogenic cell suspension cultures of the Zingiber officinale Rosc. Sci Hortic 107:90–96

    Article  CAS  Google Scholar 

  • Ibaraki Y, Kurata K (2001) Automation of somatic embryo production. Plant Cell Tissue Organ Cult 65:179–199

    Article  CAS  Google Scholar 

  • Liang GH, Xu A, Tang H (1987) Direct generation of wheat haploids via anther culture. Crop Sci 27:336–339

    Article  Google Scholar 

  • Manrique-Trujillo S, Díaz D, Reaño R, Ghislain M, Kreuze J (2013) Sweetpotato plant regeneration via an improved somatic embryogenesis protocol. Sci Hortic 161:95–100

    Article  CAS  Google Scholar 

  • Marsolais AA, Kasha KJ (1985) Callus induction from barley microspores: the role of sucrose and auxin in a barley anther culture medium. Can J Bot 63:2209–2212

    Article  CAS  Google Scholar 

  • Micheli M, Hafiz IA, Standardi A (2007) Encapsulation of in vitro derived explants of olive (Olea europaea L. cv. Moraiolo). II. Effects of storage on capsule and derived shoots performance. Sci Hortic 113:286–292

    Article  Google Scholar 

  • Mohanty P, Das J (2013) Synthetic seed technology for short term conservation of medicinal orchid Dendrobium densiflorum Lindl. Ex Wall and assessment of genetic fidelity of regenerants. Plant Growth Regul 70:297–303

    Article  CAS  Google Scholar 

  • Nagesh KS, Shanthamma C, Bhagyalakshmi N (2009) Role of polarity in de novo shoot bud initiation from stem disc explants of Curculigo orchioides Gaertn. and its encapsulation and storability. Acta Physiol Plant 31:699–704

    Article  CAS  Google Scholar 

  • Naik SK, Chand PK (2006) Nutrient-alginate encapsulation of in vitro nodal segments of pomegranate (Punica granatum L.) for germplasm distribution and exchange. Sci Hortic 108:247–252

    Article  CAS  Google Scholar 

  • Nayak S, Kaur T, Mohanty S, Ghosh G, Choudhury R, Acharya L, Subudhi E (2011) In-vitro and ex-vitro evaluation of long term micropropagated turmeric as analyzed through cytophotometry, phytoconstituents, biochemical and molecular markers. Plant Growth Regul 64:91–98

    Article  CAS  Google Scholar 

  • Parveen S, Shahzad A (2014) Encapsulation of nodal segments of Cassia angustifolia Vahl. for short-term storage and germplasm exchange. Acta Physiol Plant 36:635–640

    Article  CAS  Google Scholar 

  • Pinto G, Park YS, Silva S, Neves L, Araújo C, Santos C (2008) Factors affecting maintenance, proliferation, and germination of secondary somatic embryos of Eucalyptus globulus Labill. Plant Cell Tissue Organ Cult 95:69–78

    Article  CAS  Google Scholar 

  • Policegoudra RS, Aradhya SM (2007) Biochemical changes and antioxidant activity of mango ginger (Curcuma amada Roxb.) rhizome during postharvest storage at different temperatures. Postharvest Biol Technol 46:189–194

    Article  CAS  Google Scholar 

  • Policegoudra RS, Aradhya SM, Singh L (2011) Mango ginger (Curcuma amada Roxb.) – a promising spice for phytochemicals and biological activities. J Biosci 36:739–748

    Article  CAS  PubMed  Google Scholar 

  • Prasath D, El-Sharkawy I, Sherif S, Tiwary KS, Jayasanker S (2011) Cloning and characterization of PR5 gene from Curcuma amada and Zingiber officinale in response to Ralstonia solanacearum infection. Plant Cell Rep 30:1799–1809

    Article  CAS  PubMed  Google Scholar 

  • Saiprasad GVS, Polisetty R (2003) Propagation of three orchid genera using encapsulated protocorm-like bodies. In Vitro Cell Dev Biol Plant 39:42–48

    Article  Google Scholar 

  • Salvi ND, George L, Eapen S (2002) Micropropagation and field evaluation of micropropagated plants of turmeric. Plant Cell Tissue Organ Cult 68:143–151

    Article  Google Scholar 

  • Shajahan A, Soundar Raju C, Thilip C, Varutharaju K, Faizal M, Mehaboob V, Aslam A (2016) Direct and indirect somatic embryogenesis in mango ginger (Curcuma amada Roxb.). In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer International, Cham, pp 367–379

    Chapter  Google Scholar 

  • Singh SK, Rai MK, Asthana P, Pandey S, Jaiswal VS, Jaiswal U (2009) Plant regeneration from alginate encapsulated shoot tips of Spilanthes acmella (L.) Murr., a medicinally important and herbal pesticidal plant species. Acta Physiol Plant 31:649–653

    Article  CAS  Google Scholar 

  • Singh S, Kumar JK, Saikia D, Shanker K, Thakur JP, Negi AS, Banerjee S (2010) A bioactive labdane diterpenoid from Curcuma amada and its semisynthetic analogues as antitubercular agents. Europ J Medi Chem 45:4379–4382

    Article  CAS  Google Scholar 

  • Soundar Raju C, Kathiravan K, Aslam A, Shajahan A (2013) An efficient regeneration system via somatic embryogenesis in mango ginger (Curcuma amada Roxb.). Plant Cell Tissue Organ Cult 112:387–393

    Article  CAS  Google Scholar 

  • Soundar Raju C, Aslam A, Kathiravan K, Palani P, Shajahan A (2014) Direct somatic embryogenesis and plant regeneration of mango ginger (Curcuma amada Roxb.). In Vitro Cell Dev Biol Plant 50:752–759

    Article  CAS  Google Scholar 

  • Soundar Raju C, Aslam A, Shajahan A (2015) High-efficiency direct somatic embryogenesis and plant regeneration from leaf base explants of turmeric (Curcuma longa L.). Plant Cell Tissue Organ Cult 122:79–87

    Article  CAS  Google Scholar 

  • Soundar Raju C, Aslam A, Shajahan A (2016) Germination and storability of calcium-alginate coated somatic embryos of mango ginger (Curcuma amada Roxb.). Hortic Environ Biotechnol 57:88–96

    Article  CAS  Google Scholar 

  • Srinivasan MR, Chandrasekhara N, Srinivasan K (2008) Cholesterol lowering activity of mango ginger (Curcuma amada Roxb.) in induced hypercholesterolemic rats. Eur Food Res Technol 227:1159–1163

    Article  CAS  Google Scholar 

  • Sundararaj SG, Agrawal A, Tyagi RK (2010) Encapsulation for in vitro short-term storage and exchange of ginger (Zingiber officinale Rosc.) germplasm. Sci Hortic 125:761–766

    Article  CAS  Google Scholar 

  • Tyagi RK, Agrawal A, Mahalakshmi C, Hussain Z, Tyagi H (2007) Low-cost media for in vitro conservation of turmeric (Curcuma longa L.) and genetic stability assessment using RAPD markers. In Vitro Cell Dev Biol Plant 43:51–58

    Article  CAS  Google Scholar 

  • Venkov P, Topashka-Ancheva M, Georgieva M, Alexieva V, Karanow E (2000) Genotoxic effect of substituted phenoxyacetic acids. Arch Toxicol 74:560–566

    Article  CAS  PubMed  Google Scholar 

  • You XL, Tan X, Dai JL, Li YH, Choi YE (2012) Large-scale somatic embryogenesis and regeneration of Panax notoginseng. Plant Cell Tissue Organ Cult 108:333–338

    Article  CAS  Google Scholar 

  • Zapata EV, Morales GS, Lauzardo ANH, Bonfil BM, Tapia GT, Sánchez ADJ, Valle MVD, Aparicio AJ (2003) In vitro regeneration and acclimatization of plants of turmeric (Curcuma longa L.) in a hydroponic system. Biotechnol Apl 20:25–31

    Google Scholar 

  • Zhu GY, Geuns JMC, Dussert S, Swennen R, Panis B (2006) Change in sugar, sterol and fatty acid composition in banana meristems caused by sucrose-induced acclimation and its effects on cryopreservation. Physiol Plant 128:80–94

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank University Grants Commission, New Delhi, for the support through “College with Potential for Excellence” program. The authors also thank DST, Government of India, for providing facilities through the FIST program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shajahan, A., Raju, C.S., Mehaboob, V.M., Aslam, A. (2019). Somatic Embryogenesis and Synthetic Seed Technology of Curcuma spp.. In: Faisal, M., Alatar, A. (eds) Synthetic Seeds . Springer, Cham. https://doi.org/10.1007/978-3-030-24631-0_17

Download citation

Publish with us

Policies and ethics