Skip to main content

MR Plaque Imaging in Peripheral Artery Disease

  • Chapter
  • First Online:
Imaging in Peripheral Arterial Disease
  • 694 Accesses

Abstract

Lower extremity peripheral artery disease (PAD) is one of the most common local manifestations of systemic atherosclerosis. In population studies conducted in the United States and Europe, PAD is estimated to affect approximately 7% of those aged ≥40 years and 21% of those aged ≥65 years. Globally, more than 200 million people are living with PAD, and the number is expected to continue to grow in the next decade due to aging populations worldwide and the increasing prevalence of chronic kidney disease and diabetes. The majority of PAD patients either have no apparent symptoms or have atypical symptoms due to individual variations in lifestyle, pain threshold, or comorbidities. Given the lack of effective medical therapies for PAD beyond exercise programs, understanding and prevention of disease progression at the subclinical stage represent an important question as prophylactic measures are likely most effective in the early stage of PAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABI:

Ankle-brachial index

DANTE:

Delay alternating with mutation for tailored excitation

DESS:

Double-echo steady-state

DIR:

Double inversion recovery

FLASH:

Fast low-angle shot

FSE:

Fast spin echo

IPH:

Intraplaque hemorrhage

MERGE:

Motion-sensitized driven-equilibrium prepared rapid gradient echo

MPRAGE:

Magnetization-prepared rapid acquisition gradient echo

MSDE:

Motion-sensitized driven-equilibrium

PAD:

Peripheral artery disease

SFA:

Superficial femoral artery

SPACE:

Sampling perfection with application-optimized contrasts using different flip angle evolution

WALCS:

Walking and Leg Circulation Study

References

  1. Allison MA, Ho E, Denenberg JO, et al. Ethnic-specific prevalence of peripheral arterial disease in the United States. Am J Prev Med. 2007;32:328–33.

    Article  Google Scholar 

  2. Diehm C, Allenberg JR, Pittrow D, et al. Mortality and vascular morbidity in older adults with asymptomatic versus symptomatic peripheral artery disease. Circulation. 2009;120:2053–61.

    Article  Google Scholar 

  3. Pande RL, Perlstein TS, Beckman JA, et al. Secondary prevention and mortality in peripheral artery disease: National Health and Nutrition Examination Study, 1999 to 2004. Circulation. 2011;124:17–23.

    Article  Google Scholar 

  4. Fowkes FG, Aboyans V, Fowkes FJ, et al. Peripheral artery disease: epidemiology and global perspectives. Nat Rev Cardiol. 2017;14:156–70.

    Article  Google Scholar 

  5. Flanigan DP, Ballard JL, Robinson D, et al. Duplex ultrasound of the superficial femoral artery is a better screening tool than ankle-brachial index to identify at risk patients with lower extremity atherosclerosis. J Vasc Surg. 2008;47:789–92, 792–3.

    Article  Google Scholar 

  6. Fernandez-Friera L, Penalvo JL, Fernandez-Ortiz A, et al. Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort: the PESA (Progression of Early Subclinical Atherosclerosis) study. Circulation. 2015;131:2104–13.

    Article  Google Scholar 

  7. Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA 2005 practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients with Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006;113:e463–654.

    Article  Google Scholar 

  8. McDermott MM, Liu K, Greenland P, et al. Functional decline in peripheral arterial disease: associations with the ankle brachial index and leg symptoms. JAMA. 2004;292:453–61.

    Article  CAS  Google Scholar 

  9. Norgren L, Hiatt WR, Dormandy JA, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45(Suppl S):S5–67.

    Article  Google Scholar 

  10. Dalager S, Paaske WP, Kristensen IB, et al. Artery-related differences in atherosclerosis expression: implications for atherogenesis and dynamics in intima-media thickness. Stroke. 2007;38:2698–705.

    Article  Google Scholar 

  11. Zacharias SK, Safian RD, Madder RD, et al. Invasive evaluation of plaque morphology of symptomatic superficial femoral artery stenoses using combined near-infrared spectroscopy and intravascular ultrasound. Vasc Med. 2016;21:337–44.

    Article  CAS  Google Scholar 

  12. Bishop PD, Feiten LE, Ouriel K, et al. Arterial calcification increases in distal arteries in patients with peripheral arterial disease. Ann Vasc Surg. 2008;22:799–805.

    Article  Google Scholar 

  13. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    Article  CAS  Google Scholar 

  14. Virmani R, Ladich ER, Burke AP, et al. Histopathology of carotid atherosclerotic disease. Neurosurgery. 2006;59:S219–27, S3–13.

    Article  Google Scholar 

  15. Pasterkamp G, Borst C, Post MJ, et al. Atherosclerotic arterial remodeling in the superficial femoral artery. Individual variation in local compensatory enlargement response. Circulation. 1996;93:1818–25.

    Article  CAS  Google Scholar 

  16. Edelman RR, Chien D, Kim D. Fast selective black blood MR imaging. Radiology. 1991;181:655–60.

    Article  CAS  Google Scholar 

  17. Parker DL, Goodrich KC, Masiker M, et al. Improved efficiency in double-inversion fast spin-echo imaging. Magn Reson Med. 2002;47:1017–21.

    Article  Google Scholar 

  18. Koktzoglou I, Li D. Diffusion-prepared segmented steady-state free precession: application to 3D black-blood cardiovascular magnetic resonance of the thoracic aorta and carotid artery walls. J Cardiovasc Magn Reson. 2007;9:33–42.

    Article  Google Scholar 

  19. Wang J, Yarnykh VL, Hatsukami T, et al. Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven-equilibrium (MSDE) turbo spin-echo (TSE) sequence. Magn Reson Med. 2007;58:973–81.

    Article  Google Scholar 

  20. Li L, Miller KL, Jezzard P. DANTE-prepared pulse trains: a novel approach to motion-sensitized and motion-suppressed quantitative magnetic resonance imaging. Magn Reson Med. 2012;68:1423–38.

    Article  Google Scholar 

  21. Dong L, Underhill HR, Yu W, et al. Geometric and compositional appearance of atheroma in an angiographically normal carotid artery in patients with atherosclerosis. AJNR Am J Neuroradiol. 2010;31:311–6.

    Article  CAS  Google Scholar 

  22. Duivenvoorden R, de Groot E, Elsen BM, et al. In vivo quantification of carotid artery wall dimensions: 3.0-Tesla MRI versus B-mode ultrasound imaging. Circ Cardiovasc Imaging. 2009;2:235–42.

    Article  CAS  Google Scholar 

  23. Toussaint JF, LaMuraglia GM, Southern JF, et al. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation. 1996;94:932–8.

    Article  CAS  Google Scholar 

  24. Saam T, Ferguson MS, Yarnykh VL, et al. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol. 2005;25:234–9.

    Article  CAS  Google Scholar 

  25. Moody AR, Murphy RE, Morgan PS, et al. Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia. Circulation. 2003;107:3047–52.

    Article  Google Scholar 

  26. Cai JM, Hatsukami TS, Ferguson MS, et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation. 2005;112:3437–44.

    Article  Google Scholar 

  27. Takaya N, Cai JM, Ferguson MS, et al. Intra- and interreader reproducibility of magnetic resonance imaging for quantifying the lipid-rich necrotic core is improved with gadolinium contrast enhancement. J Magn Reson Imaging. 2006;24:203–10.

    Article  Google Scholar 

  28. Kerwin WS, Oikawa M, Yuan C, et al. MR imaging of adventitial vasa vasorum in carotid atherosclerosis. Magn Reson Med. 2008;59:507–14.

    Article  CAS  Google Scholar 

  29. Kerwin WS, O’Brien KD, Ferguson MS, et al. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology. 2006;241:459–68.

    Article  Google Scholar 

  30. Biasiolli L, Lindsay AC, Chai JT, et al. In-vivo quantitative T2 mapping of carotid arteries in atherosclerotic patients: segmentation and T2 measurement of plaque components. J Cardiovasc Magn Reson. 2013;15:69.

    Article  Google Scholar 

  31. Coolen BF, Poot DH, Liem MI, et al. Three-dimensional quantitative T1 and T2 mapping of the carotid artery: sequence design and in vivo feasibility. Magn Reson Med. 2016;75:1008–17.

    Article  Google Scholar 

  32. Yuan J, Usman A, Reid SA, et al. Three-dimensional black-blood T2 mapping with compressed sensing and data-driven parallel imaging in the carotid artery. Magn Reson Imaging. 2017;37:62–9.

    Article  Google Scholar 

  33. Qi H, Sun J, Qiao H, et al. Carotid intraplaque hemorrhage imaging with quantitative vessel wall T1 mapping: technical development and initial experience. Radiology. 2017;287(1):276–84. https://doi.org/10.1148/radiol.2017170526.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.

    Article  CAS  Google Scholar 

  35. Miao C, Chen S, Macedo R, et al. Positive remodeling of the coronary arteries detected by magnetic resonance imaging in an asymptomatic population: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2009;53:1708–15.

    Article  Google Scholar 

  36. Astor BC, Sharrett AR, Coresh J, et al. Remodeling of carotid arteries detected with MR imaging: atherosclerosis risk in communities carotid MRI study. Radiology. 2010;256:879–86.

    Article  Google Scholar 

  37. Underhill HR, Yuan C, Yarnykh VL, et al. Arterial remodeling in the subclinical carotid artery disease. J Am Coll Cardiol Img. 2009;2:1381–9.

    Article  Google Scholar 

  38. Hayashi K, Mani V, Nemade A, et al. Variations in atherosclerosis and remodeling patterns in aorta and carotids. J Cardiovasc Magn Reson. 2010;12:10.

    Article  Google Scholar 

  39. Takaya N, Yuan C, Chu BC, et al. Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study. Circulation. 2005;111:2768–75.

    Article  Google Scholar 

  40. Sun J, Balu N, Hippe DS, et al. Subclinical carotid atherosclerosis: short-term natural history of lipid-rich necrotic core – a multicenter study with MR imaging. Radiology. 2013;268:61–8.

    Article  Google Scholar 

  41. Simpson RJ, Akwei S, Hosseini AA, et al. MR imaging-detected carotid plaque hemorrhage is stable for 2 years and a marker for stenosis progression. AJNR Am J Neuroradiol. 2015;36:1171–5.

    Article  CAS  Google Scholar 

  42. Sun J, Underhill HR, Hippe DS, et al. Sustained acceleration in carotid atherosclerotic plaque progression with intraplaque hemorrhage: a long-term time course study. J Am Coll Cardiol Img. 2012;5:798–804.

    Article  Google Scholar 

  43. Singh N, Moody AR, Gladstone DJ, et al. Moderate carotid artery stenosis: MR imaging-depicted intraplaque hemorrhage predicts risk of cerebrovascular ischemic events in asymptomatic men. Radiology. 2009;252:502–8.

    Article  Google Scholar 

  44. Hosseini AA, Kandiyil N, Macsweeney ST, et al. Carotid plaque hemorrhage on magnetic resonance imaging strongly predicts recurrent ischemia and stroke. Ann Neurol. 2013;73:774–84.

    Article  Google Scholar 

  45. van den Bouwhuijsen QJ, Selwaness M, Tang H, et al. Change in carotid intraplaque hemorrhage in community-dwelling subjects: a follow-up study using serial MR imaging. Radiology. 2016;282(2):526–33. https://doi.org/10.1148/radiol.2016151806.

    Article  PubMed  Google Scholar 

  46. Isbell DC, Meyer CH, Rogers WJ, et al. Reproducibility and reliability of atherosclerotic plaque volume measurements in peripheral arterial disease with cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007;9:71–6.

    Article  Google Scholar 

  47. Li F, McDermott MM, Li D, et al. The association of lesion eccentricity with plaque morphology and components in the superficial femoral artery: a high-spatial-resolution, multi-contrast weighted CMR study. J Cardiovasc Magn Reson. 2010;12:37.

    Article  Google Scholar 

  48. Wyttenbach R, Gallino A, Alerci M, et al. Effects of percutaneous transluminal angioplasty and endovascular brachytherapy on vascular remodeling of human femoropopliteal artery by noninvasive magnetic resonance imaging. Circulation. 2004;110:1156–61.

    Article  Google Scholar 

  49. Lichy MP, Wietek BM, Mugler JR, et al. Magnetic resonance imaging of the body trunk using a single-slab, 3-dimensional, T2-weighted turbo-spin-echo sequence with high sampling efficiency (SPACE) for high spatial resolution imaging: initial clinical experiences. Investig Radiol. 2005;40:754–60.

    Article  Google Scholar 

  50. Zhang Z, Fan Z, Carroll TJ, et al. Three-dimensional T2-weighted MRI of the human femoral arterial vessel wall at 3.0 Tesla. Investig Radiol. 2009;44:619–26.

    Article  Google Scholar 

  51. Mihai G, Chung YC, Kariisa M, et al. Initial feasibility of a multi-station high resolution three-dimensional dark blood angiography protocol for the assessment of peripheral arterial disease. J Magn Reson Imaging. 2009;30:785–93.

    Article  Google Scholar 

  52. Balu N, Yarnykh VL, Chu B, et al. Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI. Magn Reson Med. 2011;65:627–37.

    Article  Google Scholar 

  53. Chiu B, Sun J, Zhao X, et al. Fast plaque burden assessment of the femoral artery using 3D black-blood MRI and automated segmentation. Med Phys. 2011;38:5370–84.

    Article  Google Scholar 

  54. Xie G, Zhang N, Xie Y, et al. DANTE-prepared three-dimensional FLASH: a fast isotropic-resolution MR approach to morphological evaluation of the peripheral arterial wall at 3 Tesla. J Magn Reson Imaging. 2016;43:343–51.

    Article  Google Scholar 

  55. Langham MC, Desjardins B, Englund EK, et al. Rapid high-resolution, self-registered, dual lumen-contrast MRI method for vessel-wall assessment in peripheral artery disease: a preliminary investigation. Acad Radiol. 2016;23:457–67.

    Article  Google Scholar 

  56. Adame IM, van der Geest RJ, Wasserman BA, et al. Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images. MAGMA. 2004;16:227–34.

    Article  CAS  Google Scholar 

  57. Kerwin WS, Xu D, Liu F, et al. Magnetic resonance imaging of carotid atherosclerosis: plaque analysis. Top Magn Reson Imaging. 2007;18:371–8.

    Article  Google Scholar 

  58. Ukwatta E, Yuan J, Qiu W, et al. Joint segmentation of lumen and outer wall from femoral artery MR images: towards 3D imaging measurements of peripheral arterial disease. Med Image Anal. 2015;26:120–32.

    Article  Google Scholar 

  59. Chen W, Xu J, Chiu B. Fast segmentation of the femoral arteries from 3D MR images: a tool for rapid assessment of peripheral arterial disease. Med Phys. 2015;42:2431–48.

    Article  Google Scholar 

  60. Davidsson L, Fagerberg B, Bergstrom G, et al. Ultrasound-assessed plaque occurrence in the carotid and femoral arteries are independent predictors of cardiovascular events in middle-aged men during 10 years of follow-up. Atherosclerosis. 2010;209:469–73.

    Article  CAS  Google Scholar 

  61. Schiano V, Sirico G, Giugliano G, et al. Femoral plaque echogenicity and cardiovascular risk in claudicants. JACC Cardiovasc Imaging. 2012;5:348–57.

    Article  Google Scholar 

  62. Bemelmans WJ, Lefrandt JD, Feskens EJ, et al. Change in saturated fat intake is associated with progression of carotid and femoral intima-media thickness, and with levels of soluble intercellular adhesion molecule-1. Atherosclerosis. 2002;163:113–20.

    Article  CAS  Google Scholar 

  63. Tsimikas S, Kiechl S, Willeit J, et al. Oxidized phospholipids predict the presence and progression of carotid and femoral atherosclerosis and symptomatic cardiovascular disease: five-year prospective results from the Bruneck study. J Am Coll Cardiol. 2006;47:2219–28.

    Article  CAS  Google Scholar 

  64. Anderson JD, Epstein FH, Meyer CH, et al. Multifactorial determinants of functional capacity in peripheral arterial disease: uncoupling of calf muscle perfusion and metabolism. J Am Coll Cardiol. 2009;54:628–35.

    Article  Google Scholar 

  65. McDermott MM, Liu K, Carr J, et al. Superficial femoral artery plaque, the ankle-brachial index, and leg symptoms in peripheral arterial disease: the walking and leg circulation study (WALCS) III. Circ Cardiovasc Imaging. 2011;4:246–52.

    Article  Google Scholar 

  66. McDermott MM, Liu K, Carroll TJ, et al. Superficial femoral artery plaque and functional performance in peripheral arterial disease: walking and leg circulation study (WALCS III). JACC Cardiovasc Imaging. 2011;4:730–9.

    Article  Google Scholar 

  67. McDermott MM, Carr J, Liu K, et al. Collateral vessel number, plaque burden, and functional decline in peripheral artery disease. Vasc Med. 2014;19:281–8.

    Article  Google Scholar 

  68. McDermott MM, Carroll T, Carr J, et al. Femoral artery plaque characteristics, lower extremity collaterals, and mobility loss in peripheral artery disease. Vasc Med. 2017;22:473–81.

    Article  Google Scholar 

  69. McDermott MM, Kramer CM, Tian L, et al. Plaque composition in the proximal superficial femoral artery and peripheral artery disease events. JACC Cardiovasc Imaging. 2017;10:1003–12.

    Article  Google Scholar 

  70. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.

    Article  CAS  Google Scholar 

  71. Pasterkamp G, Galis ZS, de Kleijn DP. Expansive arterial remodeling: location, location, location. Arterioscler Thromb Vasc Biol. 2004;24:650–7.

    Article  CAS  Google Scholar 

  72. Hartmann M, von Birgelen C, Mintz GS, et al. Relation between baseline plaque burden and subsequent remodelling of atherosclerotic left main coronary arteries: a serial intravascular ultrasound study with long-term (> or =12 months) follow-up. Eur Heart J. 2006;27:1778–84.

    Article  Google Scholar 

  73. Sipahi I, Tuzcu EM, Schoenhagen P, et al. Compensatory enlargement of human coronary arteries during progression of atherosclerosis is unrelated to atheroma burden: serial intravascular ultrasound observations from the REVERSAL trial. Eur Heart J. 2006;27:1664–70.

    Article  Google Scholar 

  74. Bianda N, Di Valentino M, Periat D, et al. Progression of human carotid and femoral atherosclerosis: a prospective follow-up study by magnetic resonance vessel wall imaging. Eur Heart J. 2012;33:230–7.

    Article  Google Scholar 

  75. West AM, Anderson JD, Epstein FH, et al. Low-density lipoprotein lowering does not improve calf muscle perfusion, energetics, or exercise performance in peripheral arterial disease. J Am Coll Cardiol. 2011;58:1068–76.

    Article  CAS  Google Scholar 

  76. Kashyap VS, Lakin RO, Campos P, et al. The LargPAD trial: phase IIA evaluation of l-arginine infusion in patients with peripheral arterial disease. J Vasc Surg. 2017;66:187–94.

    Article  Google Scholar 

  77. van Royen N, Schirmer SH, Atasever B, et al. START trial: a pilot study on STimulation of ARTeriogenesis using subcutaneous application of granulocyte-macrophage colony-stimulating factor as a new treatment for peripheral vascular disease. Circulation. 2005;112:1040–6.

    Article  Google Scholar 

  78. West AM, Anderson JD, Meyer CH, et al. The effect of ezetimibe on peripheral arterial atherosclerosis depends upon statin use at baseline. Atherosclerosis. 2011;218:156–62.

    Article  CAS  Google Scholar 

  79. Brunner G, Yang EY, Kumar A, et al. The effect of lipid modification on peripheral artery disease after endovascular intervention trial (ELIMIT). Atherosclerosis. 2013;231:371–7.

    Article  CAS  Google Scholar 

Download references

Disclosures

Dr. Sun receives grant support from the American Heart Association (17MCPRP33671077). Dr. Yuan receives grant support from the National Institutes of Health (R01 HL103609 and R01 NS092207) and serves as a member of Philips Radiology Advisory Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, J., Yuan, C. (2020). MR Plaque Imaging in Peripheral Artery Disease. In: Kramer, C. (eds) Imaging in Peripheral Arterial Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-24596-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24596-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24595-5

  • Online ISBN: 978-3-030-24596-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics