Skip to main content

Mechanics Modeling of Additive Manufactured Polymers

  • Chapter
  • First Online:
Polymer-Based Additive Manufacturing

Abstract

Polymers will continue to dominate the global market of additive manufacturing for at least a few decades. Investigating the mechanics of additive manufactured polymers not only creates fundamental knowledge of their mechanical behaviors but also guides the design and additive manufacturing of engineering or biomedical components. Unfortunately, the mechanical responses of these polymers are strongly dependent on the manufacturing process, material composition, printing orientation, temperature, etc., which bring about great challenges for the modeling. To overcome such challenges, this chapter introduces two high-fidelity nonlinear constitutive models devised specifically for additive manufactured photopolymers to facilitate the computational design process. The first model is developed to take into account the intrinsic anisotropy of photopolymers caused by the layer-wise manufacturing feature, while the second model is targeting the thermomechanical property of photopolymers across the glass transition temperature, which can be used to simulate the shape memory effect. Note that both models are applicable to the finite deformation scenario and inelastic deformation. At the end of this chapter, we also provide our humble opinions on the research demands and trends regarding the mechanics and modeling of additive manufactured polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajoku, U., Saleh, N., Hopkinson, N., Hague, R., & Erasenthiran, P. (2006). Investigating mechanical anisotropy and end-of-vector effect in laser-sintered nylon parts. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220, 1077–1086.

    Article  CAS  Google Scholar 

  • Arruda, E. M., & Boyce, M. C. (1993a). A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41, 389–412.

    Article  CAS  Google Scholar 

  • Arruda, E. M., & Boyce, M. C. (1993b). Evolution of plastic anisotropy in amorphous polymers during finite straining. International Journal of Plasticity, 9, 697–720.

    Article  CAS  Google Scholar 

  • Babaee, S., Shim, J., Weaver, J., Chen, E., Patel, N., & Bertoldi, K. (2013). 3D soft metamaterials with negative Poisson’s ratio. Advanced Materials, 25, 5044–5049.

    Google Scholar 

  • Barclift, M. W., & Williams, C. B. (2012). Examining variability in the mechanical properties of parts manufactured via polyjet direct 3D printing. In International Solid Freeform Fabrication Symposium (pp. 6–8). Austin, TX: University of Texas at Austin.

    Google Scholar 

  • Bergstrom, J. S. (2015). Mechanics of solid polymers: Theory and computational modeling. Norwich, NY: William Andrew.

    Google Scholar 

  • Boyce, M. C., & Arruda, E. M. (2000). Constitutive models of rubber elasticity: A review. Rubber Chemistry and Technology, 73, 504–523.

    Article  CAS  Google Scholar 

  • Boyce, M. C., Parks, D. M., & Argon, A. S. (1988). Large inelastic deformation of glassy polymers. Part I: Rate dependent constitutive model. Mechanics of Materials, 7, 15–33.

    Article  Google Scholar 

  • Chagnon, G., Rebouah, M., & Favier, D. (2014). Hyperelastic energy densities for soft biological tissues: A review. Journal of Elasticity, 120, 1–32.

    Google Scholar 

  • Chung, T., Romo-Uribe, A., & Mather, P. (2008). Two-way reversible shape memory in a semicrystalline network. Macromolecules, 41, 184–192.

    Google Scholar 

  • Compton, B. G., & Lewis, J. A. (2014). 3D-printing of lightweight cellular composites. Advanced Materials, 26, 5930–5935.

    Article  CAS  Google Scholar 

  • Dafalias, Y., & Rashid, M. (1989). The effect of plastic spin on anisotropic material behavior. International Journal of Plasticity, 5, 227–246.

    Article  Google Scholar 

  • Domingo-Espin, M., Puigoriol-Forcada, J. M., Garcia-Granada, A.-A., Lluma, J., Borros, S., & Reyes, G. (2015). Mechanical property characterization and simulation of fused deposition modeling polycarbonate parts. Materials & Design, 83, 670–677.

    Article  CAS  Google Scholar 

  • Gao, X., Zhang, T., Zhou, J., Graham, S. M., Hayden, M., & Roe, C. (2011). On stress-state dependent plasticity modeling: Significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule. International Journal of Plasticity, 27, 217–231.

    Article  CAS  Google Scholar 

  • Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., & Lewis, J. A. (2016). Biomimetic 4D printing. Nature Materials, 15, 413.

    Article  Google Scholar 

  • Goodridge, R., Tuck, C., & Hague, R. (2012). Laser sintering of polyamides and other polymers. Progress in Materials Science, 57, 229–267.

    Article  CAS  Google Scholar 

  • Guang Yang, W., Lu, H., Min Huang, W., Jerry Qi, H., Lian Wu, X., & Yuan Sun, K. (2014). Advanced shape memory technology to reshape product design, manufacturing and recycling. Polymers, 6, 2287–2308.

    Google Scholar 

  • Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society A, 193, 281–297.

    Article  CAS  Google Scholar 

  • Holzapfel, G. A. (2000). Nonlinear solid mechanics. Chichester: Wiley.

    Google Scholar 

  • Holzapfel, G. A. (2001). Nonlinear solid mechanics: A continuum approach for engineering. New York: Wiley.

    Google Scholar 

  • Hütter, M., Senden, D., & Tervoort, T. (2013). Comment on the use of the associated flow rule for transversely isotropic elasto-viscoplastic materials. International Journal of Plasticity, 51, 132–144.

    Article  Google Scholar 

  • Khalyfa, A., Vogt, S., Weisser, J., Grimm, G., Rechtenbach, A., Meyer, W., et al. (2007). Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. Journal of Materials Science: Materials in Medicine, 18, 909–916.

    CAS  PubMed  Google Scholar 

  • Lee, E. H. (1969). Elastic-plastic deformation at finite strains. Journal of Applied Mechanics, 36, 1–6.

    Article  Google Scholar 

  • Liu, L., & Li, Y. (2018). Predicting the mixed-mode I/II spatial damage propagation along 3D-printed soft interfacial layer via a hyperelastic softening model. Journal of the Mechanics and Physics of Solids, 116, 17–32.

    Article  Google Scholar 

  • Mao, Y., Yu, K., Isakov, M. S., Wu, J., Dunn, M. L., & Qi, H. J. (2015a). Sequential self-folding structures by 3D printed digital shape memory polymers. Scientific Reports, 5, 13616.

    Article  Google Scholar 

  • Mao, Y., Robertson, J. M., Mu, X., Mather, P. T., & Jerry Qi, H. (2015b). Thermoviscoplastic behaviors of anisotropic shape memory elastomeric composites for cold programmed non-affine shape change. Journal of the Mechanics and Physics of Solids, 85, 219–244.

    Article  CAS  Google Scholar 

  • Naficy, S., Spinks, G., & Wallace, G. (2014). Stimuli-responsive hydrogel actuators (presentation video). Proc. SPIE 9056, Electroactive Polymer Actuators and Devices (EAPAD), 90560V.

    Google Scholar 

  • Nemat-Nasser, S. (2004). Plasticity: A treatise on finite deformation of heterogeneous inelastic materials. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ning, F., Cong, W., Qiu, J., Wei, J., & Wang, S. (2015). Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Composites Part B: Engineering, 80, 369–378.

    Article  CAS  Google Scholar 

  • Ogden, R. W. (2003). Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue. In G. Holzapfel & R. Ogden (Eds.), Biomechanics of soft tissue in cardiovascular systems (pp. 65–108). Vienna: Springer.

    Chapter  Google Scholar 

  • Sanchez-Dehesa, J., Garcia-Chocano, V., Climente, A., Cervera, F., Gomez-Lozano, V., Sanchis, L., et al. (2013). Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. Physical Review Letters, 110, 124301.

    Google Scholar 

  • Spencer, A. (1971). Theory of invariants. In A. Eringen (Ed.), Continuum physics (pp. 239–352). New York: Academic Press.

    Google Scholar 

  • Wang, X., Jiang, M., Zhou, Z., Gou, J., & Hui, D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 110, 442–458.

    Article  CAS  Google Scholar 

  • Westbrook, K., Jerry Qi, H. (2008). Actuator designs using environmentally responsive hydrogels. Journal of Intelligent Materials Systems and Structures, 19, 597–607.

    Article  Google Scholar 

  • White, M. E., Yatvin, J., Joe III, B. G., Bilbrey, J., & Locklin, J. (2013). Advances in smart materials: Stimuli-responsive hydrogel thin films. Journal of Polymer Science Part B, 51, 1084–1099.

    Google Scholar 

  • Wu, J., Zhao, Z., Hamel, C. M., Mu, X., Kuang, X., Guo, Z., et al. (2018). Evolution of material properties during free radical photopolymerization. Journal of the Mechanics and Physics of Solids, 112, 25–49.

    Article  CAS  Google Scholar 

  • Yakacki, C., Saed, M., Nair, D., Gong, T., Reed, S. M., & Bowman, C. N. (2015). Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol-acrylate reaction. RSC Advances, 5, 18997–19001.

    Google Scholar 

  • Yu, K., McClung, A. J. W., Tandom, G. P., Baur, J. W., & Qi, H. J. (2014). A thermomechanical constitutive model for an epoxy based shape memory polymer and its parameter identifications. Mechanics of Time Dependent Materials, 18, 453–474.

    Article  CAS  Google Scholar 

  • Zarringhalam, H., Majewski, C., & Hopkinson, N. (2009). Degree of particle melt in Nylon-12 selective laser-sintered parts. Rapid Prototyping Journal, 15, 126–132.

    Article  Google Scholar 

  • Zhang, Y., & Chou, K. (2008). A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222, 959–968.

    Article  Google Scholar 

  • Zhang, P., & To, A. C. (2016). Transversely isotropic hyperelastic-viscoplastic model for glassy polymers with application to additive manufactured photopolymers. International Journal of Plasticity, 80, 56–74.

    Article  Google Scholar 

  • Zhao, Q., Qi, H. J., & Xie, T. (2015). Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Progress in Polymer Science, 49-50, 79–120.

    Article  CAS  Google Scholar 

  • Zheng, X., Lee, H., Weisgraber, T., Shusteff, M., DeOtte, J., Duoss, E. B., et al. (2014). Ultralight, ultrastiff mechanical metamaterials. Science, 20, 1373–1377.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, P., Mao, Y., Shu, X. (2019). Mechanics Modeling of Additive Manufactured Polymers. In: Devine, D. (eds) Polymer-Based Additive Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-24532-0_3

Download citation

Publish with us

Policies and ethics