Skip to main content

Social IoT Healthcare

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 846))

Abstract

Monitoring the vital signs of patients and thus predicting the health status of a patient in the Internet of Things (IoT) healthcare applications is the primary goal of healthcare systems. One common approach in these works is the detection of the activity of the patient (activity recognition) based on sensors in the environment. However, this method requires many sensors to record the patient’s condition, which can be costly and inconvenient. These methods cannot predict the health status of a patient, and can only detect current abnormal behavior. In this chapter we want to survey the works done in predicting the health status of patients in health care with the aids of social IoT.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alanzi, T., et al.: Evaluation of a mobile social networking application for improving diabetes Type 2 knowledge: an intervention study using WhatsApp. J. Comp. Eff. Res. 7(09), 891–899 (2018)

    Article  Google Scholar 

  2. Ali, D.H.: A social Internet of things application architecture: applying semantic web technologies for achieving interoperability and automation between the cyber, physical and social worlds. Ph.D. thesis, Institut National des Télécommunications (2015)

    Google Scholar 

  3. Atzori, L., Iera, A., Morabito, G.: Siot: giving a social structure to the Internet of things. IEEE Commun. Lett. 15(11), 1193–1195 (2011)

    Article  Google Scholar 

  4. Atzori, L., et al.: The social Internet of things (SIoT)-when social networks meet the internet of things: concept, architecture and network characterization. Comput. Netw. 56(16), 3594–3608 (2012)

    Article  Google Scholar 

  5. Avci, A., et al.: Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: a survey. In: 2010 23rd International Conference on Architecture of Computing Systems (ARCS), pp. 1–10, Feb 2010

    Google Scholar 

  6. Chen, J., et al.: Wearable sensors for reliable fall detection. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005, IEEE-EMBS 2005, pp. 3551–3554. IEEE (2006)

    Google Scholar 

  7. Cheng, J., Chen, X., Shen, M.: A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals. IEEE J. Biomed. Health Inform. 17(1), 38–45 (2013)

    Article  Google Scholar 

  8. Choudhury, T., et al.: The mobile sensing platform: an embedded activity recognition system. Pervasive Comput. (IEEE) 7(2), 32–41 (2008)

    Article  Google Scholar 

  9. Deng, Z., et al.: Life-logging data aggregation solution for interdisciplinary healthcare research and collaboration. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, pp. 2315–2320. IEEE (2015)

    Google Scholar 

  10. Dohr, A., et al.: The Internet of things for ambient assisted living. In: 2010 Seventh International Conference on Information Technology: New Generations (ITNG), 2010, pp. 804–809. https://doi.org/10.1109/ITNG.2010.104

  11. Fuster-Parra, P., et al.: Bayesian network modeling: a case study of an epidemiologic system analysis of cardiovascular risk. Comput. Methods Programs Biomed. 126, 128–142 (2016). https://doi.org/10.1016/j.cmpb.2015.12.010

    Article  Google Scholar 

  12. Gayathri, K.S., Elias, S., Ravindran, B.: Hierarchical activity recognition for dementia care using Markov logic network. Pers. Ubiquitous Comput. 19(2), 271–285 (2015). https://doi.org/10.1007/s00779-014-0827-7

    Article  Google Scholar 

  13. Gottfried, B., et al.: Spatial health systems. In: Smart Health, pp. 41–69. Springer (2015)

    Google Scholar 

  14. Griffiths, F., et al.: The impact of online social networks on health and health systems: a scoping review and case studies. Policy Internet 7(4), 473–496 (2015)

    Article  MathSciNet  Google Scholar 

  15. Han, N.S.: Semantic service provisioning for 6LoWPAN: powering internet of things applications on Web. Ph.D. thesis, Institut National des Télécommunications (2015)

    Google Scholar 

  16. Jakkula, V.R., Cook, D.J.: Detecting anomalous sensor events in smart home data for enhancing the living experience. Artif. Intell. Smarter Living 11(201), 1 (2011)

    Google Scholar 

  17. Khan, S.S., et al.: Towards the detection of unusual temporal events during activities using HMMs. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 1075–1084. ACM (2012)

    Google Scholar 

  18. Koreshoff, T.L., Leong, T.W., Robertson, T.: Approaching a human-centred Internet of things. In: Proceedings of the 25th Australian Computer-Human Interaction Conference: Augmentation, Application, Innovation, Collaboration, pp. 363–366. ACM (2013)

    Google Scholar 

  19. Kulkarni, P., Öztürk, Y.: Requirements and design spaces of mobile medical care. ACM SIGMOBILE Mob. Comput. Commun. Rev. 11(3), 12–30 (2007)

    Article  Google Scholar 

  20. Kumara, S., Cui, L.Y., Zhang, J.: Sensors, networks and Internet of things: research challenges in health care. In: Proceedings of the 8th International Workshop on Information Integration on the Web: In Conjunction with WWW 2011, IIWeb ’11, Hyderabad, India, 2:1–2:4. ACM (2011). https://doi.org/10.1145/1982624.1982626. ISBN: 978-1-4503-0620-1

  21. Lee, M.-S., et al.: Unsupervised clustering for abnormality detection based on the tri-axial accelerometer. In: ICCAS-SICE, 2009, pp. 134–137. IEEE (2009)

    Google Scholar 

  22. Li, Q., et al.: Accurate, fast fall detection using gyroscopes and accelerometerderived posture information. In: Sixth International Workshop on Wearable and Implantable Body Sensor Networks, 2009, BSN 2009, pp. 138–143. IEEE (2009)

    Google Scholar 

  23. Lin, C.-H., Ho, P.-H., Lin, H.-C.: Framework for NFC based intelligent agents: a context-awareness enabler for social Internet of things. Int. J. Distrib. Sens. Netw. 10(2), 978951 (2014)

    Article  Google Scholar 

  24. Lotfi, A., et al.: Smart homes for the elderly dementia sufferers: identification and prediction of abnormal behaviour. J. Ambient Intell. Hum. Comput. 3(3), 205–218 (2012)

    Article  Google Scholar 

  25. Maghawry, N.E., Ghoniemy, S.: A proposed Internet of everything framework for disease prediction. Int. J. Online Eng. 15(4) (2019)

    Article  Google Scholar 

  26. Masic, I., et al.: Social networks in improvement of health care. Materia Socio-Medica 24(1), 48 (2012)

    Article  Google Scholar 

  27. Mayer, S., et al.: An open semantic framework for the industrial Internet of things. IEEE Intell. Syst. 32(1), 96–101 (2017)

    Article  Google Scholar 

  28. Meng, L., Miao, C., Leung, C.: Towards online and personalized daily activity recognition, habit modeling, and anomaly detection for the solitary elderly through unobtrusive sensing. Multimed. Tools Appl. 76(8), 10779–10799 (2017)

    Article  Google Scholar 

  29. Mirmahboub, B., et al.: Automatic monocular system for human fall detection based on variations in silhouette area. IEEE Trans. Biomed. Eng. 60(2), 427–436 (2013)

    Article  Google Scholar 

  30. Moreno-Fernandez-de-Leceta, A., et al.: Real prediction of elder people abnormal situations at home. In: Grana, M., et al. (eds.) International Joint Conference SOCO’16-CISIS’16-ICEUTE’16, San Sebastián, Spain, 19–21 October 2016 Proceedings, pp. 31–40. Springer International Publishing, Cham (2017)

    Google Scholar 

  31. Nahar, J., et al.: Association rule mining to detect factors which contribute to heart disease in males and females. Expert Syst. Appl. 40(4), 1086–1093 (2013)

    Article  Google Scholar 

  32. Ordóñez, F.J., de Toledo, P., Sanchis, A.: Sensor-based Bayesian detection of anomalous living patterns in a home setting. Pers. Ubiquitous Comput. 19(2), 259–270 (2015)

    Article  Google Scholar 

  33. Peri, D.: Body area networks and healthcare. In: Advances onto the Internet of Things: How Ontologies Make the Internet of Things Meaningful, pp. 301–310. Springer International Publishing, Cham (2014)

    Google Scholar 

  34. Rakhecha, S., Hsu, K.: Reliable and secure body fall detection algorithm in a wireless mesh network. In: Proceedings of the 8th International Conference on Body Area Networks, pp. 420–426. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2013)

    Google Scholar 

  35. Shaji, S., Ramesh, M.V., Menon, V.N.: Real-time processing and analysis for activity classification to enhance wearable wireless ECG. In: Proceedings of the Second International Conference on Computer and Communication Technologies, pp. 21–35. Springer (2016)

    Google Scholar 

  36. Turcu, C.E., Turcu, C.O.: Social Internet of things in healthcare: from things to social things in Internet of things. In: The Internet of Things: Breakthroughs in Research and Practice, pp. 88–111. IGI Global (2017)

    Google Scholar 

  37. Yin, J., Yang, Q., Pan, J.J.: Sensor-based abnormal human-activity detection. IEEE Trans. Knowl. Data Eng. 20(8), 1082–1090 (2008)

    Article  Google Scholar 

  38. Zamanifar, A., Nazemi, E.: An approach for predicting health status in IoT health care. J. Netw. Comput. Appl. (2019)

    Google Scholar 

  39. Zamanifar, A., Nazemi, E., Vahidi-Asl, M.: A mobility solution for hazardous areas based on 6LoWPAN. In: Mobile Networks and Applications, pp. 1–16 (2017)

    Article  Google Scholar 

  40. Zhang, K., et al.: Exploiting mobile social behaviors for Sybil detection. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 271–279. IEEE (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Zamanifar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zamanifar, A. (2020). Social IoT Healthcare. In: Hassanien, A., Bhatnagar, R., Khalifa, N., Taha, M. (eds) Toward Social Internet of Things (SIoT): Enabling Technologies, Architectures and Applications. Studies in Computational Intelligence, vol 846. Springer, Cham. https://doi.org/10.1007/978-3-030-24513-9_1

Download citation

Publish with us

Policies and ethics