Advertisement

Selected Applications

  • Francesco ArchettiEmail author
  • Antonio Candelieri
Chapter
Part of the SpringerBriefs in Optimization book series (BRIEFSOPTI)

Abstract

It has been already pointed out in the preface that BO has been gaining increasing importance in widespread and ubiquitous application domains.

References

  1. Aggarwal, C.C.: Recommender systems, pp. 1–28. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  2. Archetti, F., Giordani, I., Vanneschi, L.: Genetic programming for QSAR investigation of docking energy. Appl. Soft Comput. 10(1), 170–182 (2010)CrossRefGoogle Scholar
  3. Ashmaig, O., Connolly, M., Gross, R.E., Mahmoudi, B.: Bayesian optimization of asynchronous distributed microelectrode theta stimulation and spatial memory. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2683–2686 (2018)Google Scholar
  4. Azimi, J., Jalali, A., Fern, X.: Hybrid batch Bayesian optimization 1–12 (2012). doi:10.1.1.467.8687. arXiv preprint arXiv:1202.5597
  5. Baheri, A., Vermillion, C.: Combined plant and controller design using batch Bayesian optimization: a case study in airborne wind energy systems. J. Dyn. Syst. Meas. Control (2019)Google Scholar
  6. Balachandran, P.V., Xue, D., Theiler, J., Hogden, J., Lookman, T.: Adaptive strategies for materials design using uncertainties. Scientific Reports. 6 (2016).  https://doi.org/10.1038/srep19660
  7. Bansal, S., Calandra, R., Xiao, T., Levine, S., Tomiin, C.J.: Goal-driven dynamics learning via Bayesian optimization. In: 017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 5168–5173. IEEE (2017)Google Scholar
  8. Bogunovic, I., Scarlett, J., Jegelka, S., Cevher, V.: Adversarially Robust Optimization with Gaussian Processes. In: Advances in Neural Information Processing Systems, pp. 5760–5770 (2018)Google Scholar
  9. Candelieri, A., Giordani, I., Archetti, F.: Automatic configuration of Kernel-based clustering: an optimization approach. In: International Conference on Learning and Intelligent Optimization, pp. 34–49. Springer, Cham (2017, June)Google Scholar
  10. Candelieri, A., Soldi, D., Archetti, F.: Cost-effective sensors placement and leak localization—The Neptune pilot of the ICeWater project. J. Water Supply Res. Technol. AQUA. 567–582 (2015)CrossRefGoogle Scholar
  11. Candelieri, A., Perego, R., Archetti, F.: Bayesian optimization of pump operations in water distribution systems. J. Global Optim. 71, 213–235 (2018).  https://doi.org/10.1007/s10898-018-0641-2MathSciNetCrossRefzbMATHGoogle Scholar
  12. Chaudhuri, A., Marques, A.N., Lam, R., Willcox, K.: Reusing Information for Multifidelity Active Learning in Reliability-Based Design Optimization. AIAA Scitech 2019 Forum. 1–12 (2019).  https://doi.org/10.2514/6.2019-1222
  13. Cheng, L.-F., Darnell, G., Dumitrascu, B., Chivers, C., Draugelis, M.E., Li, K., Engelhardt, B.E.: Sparse multi-output gaussian processes for medical time series prediction (2017). arXiv preprint arXiv:1703.09112
  14. Colopy, G.W., Pimentel, M.A.F.F., Roberts, S.J., Clifton, D.A.: Bayesian optimisation of Gaussian processes for identifying the deteriorating patient. In: 2017 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2017. pp. 85–88 (2017)Google Scholar
  15. Colopy, G.W., Roberts, S.J., Clifton, D.A.: Bayesian optimization of personalized models for patient vital-sign monitoring. IEEE J. Biomed. Health Inform. 22, 301–310 (2018).  https://doi.org/10.1109/JBHI.2017.2751509CrossRefGoogle Scholar
  16. Cooper, J., Cervenansky, F., De Fabritiis, G., Fenner, J., Friboulet, D., Giorgino, T., Manos, S., Martelli, Y., Villá-Freixa, J., Zasada, S., Lloyd, S., Mccormack, K., Coveney, P.V.: The virtual physiological human toolkit. Philos. Trans. Royal Soc. A Mathe. Phys Eng. Sci. 368, 3925–3936 (2010).  https://doi.org/10.1098/rsta.2010.0144CrossRefGoogle Scholar
  17. Crespo-Vazquez, J.L., Carrillo, C., Diaz-Dorado, E., Martinez-Lorenzo, J.A., Noor-E-Alam, M.: A machine learning based stochastic optimization framework for a wind and storage power plant participating in energy pool market. Appl. Energy 232, 341–357 (2018).  https://doi.org/10.1016/j.apenergy.2018.09.195CrossRefGoogle Scholar
  18. Dolatnia, N., Fern, A., Fern, X.: Toward embedding Bayesian optimization in the lab: reasoning about resource and actions. In: AAAI Fall Symposium—Technical Report (2015)Google Scholar
  19. Dong, G., Chen, Z.: Data-driven energy management in a home microgrid based on Bayesian optimal algorithm. IEEE Trans. Industr. Inf. 15(2), 869–877 (2019)CrossRefGoogle Scholar
  20. Fersini, E., Messina, E., Archetti, F.: A p-median approach for predicting drug response in tumour cells. BMC Bioinform. 15 (2014).  https://doi.org/10.1186/s12859-014-0353-7
  21. Galuzzi, B.G., Perego, R., Candelieri, A., Archetti, F.: Bayesian optimization for full waveform inversion. In: Daniele P., S.L. (eds.) New Trends in Emerging Complex Real Life Problems, pp. 257–264. Springer International Publishing, Taormina (2018)Google Scholar
  22. Garnett, R., Osborne, M.A., Roberts, S.J.: Bayesian optimization for sensor set selection. In: Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks—IPSN’10, pp. 209–219. Stockholm (2010)Google Scholar
  23. Ghoreishi, S.F., Allaire, D.: Multi-information source constrained Bayesian optimization. Struct. Multidisciplinary Optim. 1–15 (2018).  https://doi.org/10.1007/s00158-018-2115-zMathSciNetCrossRefGoogle Scholar
  24. Ghosh, S., Berkenkamp, F., Ranade, G., Qadeer, S., Kapoor, A.: Verifying Controllers Against Adversarial Examples with Bayesian Optimization. In: IEEE International Conference on Robotics and Automation (ICRA). pp. 7306–7313, Brisbane (2018)Google Scholar
  25. Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley, D.: Google Vizier: A Service for Black-Box Optimization. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 1487–1495. ACM (2017)Google Scholar
  26. Gonzalvez, J., Lezmi, E., Roncalli, T., Xu, J.: Financial applications of Gaussian processes and Bayesian optimization (2019). arXiv preprint arXiv:1903.04841
  27. Gordon, D.F.N.N., Matsubara, T., Noda, T., Teramae, T., Morimoto, J., Vijayakumar, S.: Bayesian Optimisation of Exoskeleton Design Parameters. In: Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 653–658 (2018)Google Scholar
  28. Griffiths, R.-R., Hernández-Lobato, J.M.: Constrained Bayesian optimization for automatic chemical design (2017). arXiv preprint arXiv:1709.05501
  29. Ju, S., Shiga, T., Feng, L., Hou, Z., Tsuda, K., Shiomi, J.: Designing nanostructures for phonon transport via Bayesian optimization. Phys. Rev. X 7(2), 021024 (2017)Google Scholar
  30. Kim, M., Ding, Y., Malcolm, P., Speeckaert, J., Siviy, C.J., Walsh, C.J., Kuindersma, S.: Human-in-the-loop Bayesian optimization of wearable device parameters. PloS one. 12(9), e0184054 (2017)CrossRefGoogle Scholar
  31. Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J.: Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3(11), 935 (2004)CrossRefGoogle Scholar
  32. Kiyohara, S., Oda, H., Tsuda, K., Mizoguchi, T.: Acceleration of stable interface structure searching using a kriging approach. Japanese J. Appl. Phys. 55 (2016).  https://doi.org/10.7567/jjap.55.045502CrossRefGoogle Scholar
  33. Lam, R., Willcox, K., Wolpert, D.H.: Bayesian optimization with a finite budget: an ap-proximate dynamic programming approach. Adv. Neural. Inf. Process. Syst. 30, 883–891 (2016).  https://doi.org/10.1186/1471-2407-4-76CrossRefGoogle Scholar
  34. Lancaster, J., Lorenz, R., Leech, R., Cole, J.H.: Bayesian optimization for neuroimaging pre-processing in brain age classification and prediction. Front. Aging Neuro. 10, 28 (2018)CrossRefGoogle Scholar
  35. Letham, B., Karrer, B., Ottoni, G., Bakshy, E.: Constrained Bayesian optimization with noisy experiments. Bayesian Anal. 14(2), 495–519 (2019)MathSciNetCrossRefGoogle Scholar
  36. Liang, X.: Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization. Comput.-Aided Civil Infrastruct. Eng (2018).  https://doi.org/10.1111/mice.12425CrossRefGoogle Scholar
  37. Li, C., Pan, Q.: Adaptive optimization methodology based on Kriging modeling and a trust region method. Chinese J. Aeronaut. (2019).  https://doi.org/10.1016/j.cja.2018.11.012CrossRefGoogle Scholar
  38. Liu, S., Yue, Y., Krishnan, R.: Adaptive collective routing using gaussian process dynamic congestion models. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 704–712. ACM (2013, August)Google Scholar
  39. Lookman, T., Balachandran, P.V., Xue, D., Yuan, R.: Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. Computat. Mater. 5, 21 (2019).  https://doi.org/10.1038/s41524-019-0153-8CrossRefGoogle Scholar
  40. Lorenz, R., Monti, R.P., Violante, I.R., Anagnostopoulos, C., Faisal, A.A., Montana, G., Leech, R.: The automatic neuroscientist: a framework for optimizing experimental design with closed-loop real-time fMRI. NeuroImage 129, 320–334 (2016).  https://doi.org/10.1016/j.neuroimage.2016.01.032CrossRefGoogle Scholar
  41. Lorenz, R., Simmons, L.E., Monti, R.P., Arthur, J.L., Limal, S., Laakso, I., Leech, R., Violante, I.R.: Efficiently searching through large tACS parameter spaces using closed-loop Bayesian optimization. Brain Stimul. (2019)Google Scholar
  42. Mala-Jetmarova, H., Sultanova, N., Savic, D.: Lost in optimisation of water distribution systems? A literature review of system operation. Environ. Model Softw. 93, 209–254 (2017)CrossRefGoogle Scholar
  43. Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.: Virtual versus real: trading off simulations and physical experiments in reinforcement learning with bayesian optimization. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1557–1563. IEEE (2017, May)Google Scholar
  44. Meldgaard, S.A., Kolsbjerg, E.L., Hammer, B.: Machine learning enhanced global optimization by clustering local environments to enable bundled atomic energies. J. Chem. Phys. 149 (2018).  https://doi.org/10.1063/1.5048290CrossRefGoogle Scholar
  45. Moustakis, N., Mulders, S. P., Kober, J., van Wingerden, J.W.A.: Practical Bayesian optimization approach for the optimal estimation of the rotor effective wind speed (2019)Google Scholar
  46. Naoum-Sawaya, J., Ghaddar, B., Arandia, E., Eck, B.: Simulation-optimization approaches for water pump scheduling and pipe replacement problems. Eur. J. Oper. Res. 246, 293–306 (2015).  https://doi.org/10.1016/j.ejor.2015.04.028CrossRefzbMATHGoogle Scholar
  47. Negoescu, D.M., Frazier, P.I., Powell, W.B.: The knowledge-gradient algorithm for sequencing experiments in drug discovery. INFORMS J. Comput. 23, 346–363 (2011).  https://doi.org/10.1287/ijoc.1100.0417MathSciNetCrossRefzbMATHGoogle Scholar
  48. Neumann-brosig, M., Marco, A., Schwarzmann, D., Trimpe, S.: Data-efficient Auto-tuning with Bayesian optimization: an industrial control study (2018). arXiv preprint arXiv:1812.06325
  49. Olofsson, S., Mehrian, M., Calandra, R., Geris, L., Deisenroth, M., Misener, R.: Bayesian multi-objective optimisation with mixed analytical and black-box functions: application to tissue engineering, (2018)Google Scholar
  50. Packwood, D.: Bayesian Optimization for Materials Science. Springer (2017)Google Scholar
  51. Palar, P.S., Dwianto, Y.B., Regis, R.G., Oyama, A., Zuhal, L.R.: Benchmarking Constrained Surrogate-based Optimization on Low Speed Airfoil Design Problems (2019)Google Scholar
  52. Pecci, F., Abraham, E., Stoianov, I.: Quadratic head loss approximations for optimisation problems in water supply networks, J. Hydroinformatics. 19, 493–506 (2017). ISSN: 1464-7141CrossRefGoogle Scholar
  53. Pirot, G., Krityakierne, T., Ginsbourger, D., Renard, P.: Contaminant source localization via Bayesian global optimization. Hydrol. Earth Syst. Sci. 23(1) (2019)CrossRefGoogle Scholar
  54. Polymenakos, K., Abate, A., Roberts, S.: Safe policy search using Gaussian process models. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1565–1573. International Foundation for Autonomous Agents and Multiagent Systems (2019, May)Google Scholar
  55. Przystałka, P.: Performance optimization of a leak detection scheme for water distribution networks. IFAC-PapersOnLine 51(24), 914–921 (2018)CrossRefGoogle Scholar
  56. Pyzer-Knapp, E.O.: Bayesian optimization for accelerated drug discovery. IBM J. Res. Develop. 1–1 (2018).  https://doi.org/10.1147/jrd.2018.2881731CrossRefGoogle Scholar
  57. Sano, S., Kadowaki, T., Tsuda, K., Kimura, S.: Application of bayesian optimization for pharmaceutical product development. J. Pharmaceutical Innov. 1–11 (2019)Google Scholar
  58. Schillinger, M., Hartmann, B., Skalecki, P., Meister, M., Nguyen-Tuong, D., Nelles, O.: Safe active learning and safe Bayesian optimization for tuning a PI-controller. IFAC-PapersOnLine 50, 5967–5972 (2017).  https://doi.org/10.1016/j.ifacol.2017.08.1258CrossRefGoogle Scholar
  59. Seko, A., Maekawa, T., Tsuda, K., Tanaka, I.: Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids. Phys. Rev. B Condens. Matter Mater. Phys. 89 (2014).  https://doi.org/10.1103/physrevb.89.054303
  60. Seko, A., Togo, A., Hayashi, H., Tsuda, K., Chaput, L., Tanaka, I.: Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization. Phys. Rev. Lett. 115 (2015).  https://doi.org/10.1103/physrevlett.115.205901
  61. Solomou, A., Zhao, G., Boluki, S., Joy, J.K., Qian, X., Karaman, I., Arroyave, R., Lagoudas, D.C.: Multi-objective bayesian materials discovery: Application on the discovery of precipitation strengthened NiTi shape memory alloys through micromechanical modeling. Mater. & Des. 160, 810–827 (2018)Google Scholar
  62. Tsai, Y.-A., Pedrielli, G., Mathesen, Logan Zabinsky, Z.B., Huang, H., Candelieri, Antonio Perego, R.: Stochastic optimization for feasibility determination: an application to water pump operation in water distribution network. In: Proceedings of the 2018 Winter Simulation Conference, pp. 1945–1956. IEEE, Gothenburg, Sweden (2018)Google Scholar
  63. Turchetta, M., Makarova, A., Beyeler, S.: Calibration of agent based transport simulations with multi-fidelity Bayesian optimization. In: 18th Swiss Transport Research Conference (STRC 2018) (2018)Google Scholar
  64. Vanchinathan, H.P., Nikolic, I., De Bona, F., Krause, A.: Explore-exploit in top-N recommender systems via Gaussian processes. In: Proceedings of the 8th ACM Conference on Recommender systems—RecSys’14, pp. 225–232 (2014)Google Scholar
  65. Wang, H., Jin, Y.: A random forest-assisted evolutionary algorithm for data-driven constrained multiobjective combinatorial optimization of trauma systems. IEEE Trans. Cybern (2018).  https://doi.org/10.1109/tcyb.2018.2869674
  66. Zhan, H., Gomes, G., Li, X.S., Madduri, K., Wu, K.: Efficient online hyperparameter optimization for Kernel ridge regression with applications to traffic time series prediction. 89, 1–19 (2018). arXiv preprint arXiv:1811.00620

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science, Systems and CommunicationsUniversity of Milano-BicoccaMilanItaly

Personalised recommendations