Skip to main content

From Global Optimization to Optimal Learning

  • Chapter
  • First Online:
Bayesian Optimization and Data Science

Part of the book series: SpringerBriefs in Optimization ((BRIEFSOPTI))

Abstract

What is the relation between finding the global minimum of the function below and the learning paradigm (Fig. 2.1)? What learning models have in common with global optimization methods? Outlining possible answers and linking them to other parts of the book are the objective of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, M.O., Vaswani, S., Schmidt, M.: Combining Bayesian Optimization and Lipschitz Optimization (2018). arXiv preprint arXiv:1810.04336

  • Archetti, F., Betrò, B.: A priori analysis of deterministic strategies. In: Dixon L., Szego G.P. (eds.) Towards Global Optimisation, vol. 2. North Holland (1978)

    Google Scholar 

  • Archetti, F.: A sampling technique for global optimisation. In: Dixon L., Szego G.P. (eds.) Towards Global Optimisation, vol. 1. North Holland (1975)

    Google Scholar 

  • Archetti, F.: A stopping criterion for global optimization algorithms. Quaderni del Dipartimento di Ricerca Operativa e Scienze Statistiche A-61 (1979)

    Google Scholar 

  • Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

    Article  MATH  Google Scholar 

  • Bagattini, F., Schoen, F., Tigli, L.: Clustering methods for large scale geometrical global optimization. Optim. Methods Softw. 1–24 (2019)

    Google Scholar 

  • Barsce, J.C., Palombarini, J.A., & Martínez, E.C.: Towards autonomous reinforcement learning: automatic setting of hyper-parameters using Bayesian optimization. In: 2017 XLIII Latin American Computer Conference (CLEI), pp. 1–9. IEEE (2017, September)

    Google Scholar 

  • Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  • Betro, B.: Bayesian testing of nonparametric hypotheses and its application to global optimization. J. Optim. Theory Appl. 42(1), 31–50 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Betrò, B., Rotondi, R.: A Bayesian algorithm for global optimization. Ann. Oper. Res. 1(2), 111–128 (1984)

    Article  MATH  Google Scholar 

  • Boender, C.G.E., Kan, A.H.G.R., Timmer, G.T.: A stochastic method for global optimization. Math. Program. 22, 125–140 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Borji, A., Itti, L.: Bayesian optimization explains human active search. Adv. Neural Inf. Process. Syst. 26(NIPS2013), 55–63 (2013)

    MATH  Google Scholar 

  • Brooks, S.H.: A discussion of random methods for seeking maxima. Oper. Res. 6, 244–251 (1958). https://doi.org/10.1287/opre.6.2.244

    Article  Google Scholar 

  • Clough, D.J.: An asymptotic extreme value sampling theory for estimation of global maximum. CORS J. 102–115 (1969)

    Google Scholar 

  • Dixon, L.C.W., Szegö, G.P.: Towards Global Optimization 1. Dixon, L.C.W., Szegö, G.P. eds. North Holland (1975)

    Google Scholar 

  • Dixon, L.C.W., Szegö, G.P.: Towards Global Optimization 2. In: Dixon, L.C.W., Szegö, G.P. (eds.). North Holland (1978)

    Google Scholar 

  • Dodge, J., Anderson, C., Smith, N.A.: Random search for hyperparameters using determinantal point processes (2017). arXiv preprint

    Google Scholar 

  • Engel, Y., Mannor, S., & Meir, R. (2003). Bayes meets Bellman: The Gaussian process approach to temporal difference learning. In Proceedings of the 20th International Conference on Machine Learning (ICML-03) (pp. 154–161)

    Google Scholar 

  • Evtushenko, Y.G.: Numerical methods for finding global extrema (Case of a non-uniform mesh). USSR Comput. Math. Math. Phys. 11, 38–54 (1971). https://doi.org/10.1016/0041-5553(71)90065-6

    Article  Google Scholar 

  • Falkner, S., Klein, A., Hutter, F.: Combining Hyperband and Bayesian Optimization. In: Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS), Bayesian Optimization Workshop (2017)

    Google Scholar 

  • Florea, A.C., Andonie, R.: A dynamic early stopping criterion for random search in SVM hyperparameter optimization. In: IFIP International Conference on Artificial Intelligence Applications and Innovations, pp. 168–180. Springer, Cham (2018)

    Google Scholar 

  • Gershman, S.J.: Deconstructing the human algorithms for exploration. Cognition 173, 34–42 (2018). https://doi.org/10.1016/j.cognition.2017.12.014

    Article  Google Scholar 

  • Gershman, S.J.: Uncertainty and exploration. bioRxiv, 265504 (2018). https://doi.org/10.1101/265504

  • Gopnik, A., O’Grady, S., Lucas, C. G., Griffiths, T. L., Wente, A., Bridgers, S., et al.: Changes in cognitive flexibility and hypothesis search across human life history from childhood to adolescence to adulthood. Proc. National Acad. Sci. 114(30), 7892–7899 (2017)

    Article  Google Scholar 

  • Griffiths, T.L., Lucas, C., Williams, J., Kalish, M.L. (2009). Modeling human function learning with Gaussian processes. In: Advances in Neural Information Processing Systems, pp. 553–560

    Google Scholar 

  • Hansen, N.: The CMA evolution strategy: a tutorial (2016). arXiv preprint arXiv:1604.00772

  • Hauschild, M., Pelikan, M.: An introduction and survey of estimation of distribution algorithms. Swarm Evol. Comput. 1(3), 111–128 (2011)

    Article  Google Scholar 

  • Jalali, A., Azimi, J., Fern, X., Zhang, R.: A Lipschitz exploration-exploitation scheme for Bayesian optimization. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8188 LNAI, 210–224 (2013). https://doi.org/10.1007/978-3-642-40988-2_14

    Chapter  Google Scholar 

  • Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization (2016). arXiv preprint arXiv:1603.06560

  • Ling, C.K., Low, K.H., Jaillet, P.: Gaussian process planning with Lipschitz continuous reward functions: towards unifying bayesian optimization, active learning, and beyond. In: AAAI, pp 1860–1866 (2016)

    Google Scholar 

  • Locatelli, M., Schoen, F.: Global Optimization: theory, Algorithms, and Applications, vol. 15. Siam (2013)

    Google Scholar 

  • Locatelli, M., Schoen, F.: Random linkage: a family of acceptance/rejection algorithms for global optimisation. Math. Program. Series B. 85, 379–396 (1999). https://doi.org/10.1007/s101070050062

    Article  MathSciNet  MATH  Google Scholar 

  • Malherbe, C., Vayatis, N.: Global optimization of Lipschitz functions (2017). arXiv preprint arXiv:1703.02628

  • Mania, H., Guy, A., Recht, B.: Simple random search provides a competitive approach to reinforcement learning (2018). arXiv preprint arXiv:1803.07055

  • Missov, T.I., Ermakov, S.M.: On importance sampling in the problem of global optimization. Monte Carlo Methods Appl. 15, 135–144 (2009). https://doi.org/10.1515/MCMA.2009.007

    Article  MathSciNet  MATH  Google Scholar 

  • Norkin, V.I., Pflug, G.C., Ruszczynski, A.: A branch and bound method for stochastic global optimization. Math. Program. 83, 425–450 (1998)

    MathSciNet  MATH  Google Scholar 

  • Ortega, P.A., Wang, J.X., Rowland, M., Genewein, T., Kurth-Nelson, Z., Pascanu, R., et al.: Meta-learning of sequential strategies (2019). arXiv preprint arXiv:1905.03030

  • Pardalos, P. M., & Romeijn, H. E. (Eds.). (2013). Handbook of global optimization (Vol. 2). Springer Science & Business Media

    Google Scholar 

  • Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method in multiobjective problems. In: Proceedings of the 2002 ACM symposium on Applied computing, pp. 603–607. ACM (2002, March)

    Google Scholar 

  • Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: the Bayesian optimization algorithm. In: Genetic and Evolutionary Computation Conference, pp. 525–532 (1999)

    Google Scholar 

  • Peterson, J., Bourgin, D., Reichman, D., Griffiths, T., Russell, S.: Cognitive model priors for predicting human decisions. In International Conference on Machine Learning, pp. 5133–5141 (2019, May)

    Google Scholar 

  • Pintér, J.D. (ed.).: Global Optimization: scientific and Engineering Case Studies, vol. 85. Springer Science & Business Media (2006)

    Google Scholar 

  • Powell, W.B., Ryzhov, I.O.: Optimal Learning, vol. 841. Wiley (2012)

    Google Scholar 

  • Rastrigin, L.A.: The convergence of the random search method in the extremal control of a many parameter system. Autom. Rem. Control. 24(10), 1337–1342 (1963)

    Google Scholar 

  • Schoen, F.: Random and quasi-random linkage methods in global optimization. J. Global Optim. 13, 445–454 (1998). https://doi.org/10.1023/A:1008354314309

    Article  MathSciNet  MATH  Google Scholar 

  • Schulz, L.: The origins of inquiry: inductive inference and exploration in early childhood. Trends Cognitive Sciences 16(7), 382–389 (2012)

    Article  Google Scholar 

  • Schulz, E., Tenenbaum, J., Duvenaud, D.K., Speekenbrink, M., Gershman, S.J.: Probing the compositionality of intuitive functions. In: Advances in Neural Information Processing Systems, pp. 3729–3737 (2016)

    Google Scholar 

  • Schulz, E., Tenenbaum, J.B., Reshef, D.N., Speekenbrink, M., Gershman, S.: Assessing the Perceived Predictability of Functions. In: CogSci (2015)

    Google Scholar 

  • Schulz, E., Speekenbrink, M., Krause, A.: A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions. J. Math. Psychol. 85, 1–16 (2018a)

    Article  MathSciNet  MATH  Google Scholar 

  • Schulz, E., Konstantinidis, E., Speekenbrink, M.: Putting bandits into context: how function learning supports decision making. J. Exp. Psychol.-Learn. Memoru Cognition 44(6), 927–943 (2018b)

    Article  Google Scholar 

  • Sergeyev, Y.D., Candelieri, A., Kvasov, D.E., Perego, R.: Safe global optimization of expensive noisy black-box functions in the δ-Lipschitz framework (2019). arXiv preprint arXiv:1908.06010

  • Sergeyev, Y.D., Kvasov, D.E.: Deterministic Global Optimization: an Introduction to the Diagonal Approach. Springer (2017)

    Google Scholar 

  • Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16 (2006). https://doi.org/10.1137/040621132

    Article  MathSciNet  MATH  Google Scholar 

  • Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Scientific Reports 8(1), 453 (2018)

    Article  Google Scholar 

  • Shubert, B.O.: A sequential method seeking the global maximum of a function. SIAM J. Numer. Anal. 9(3), 379–388 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.: Gaussian process optimization in the bandit setting: no regret and experimental design (2009). arXiv preprint arXiv:0912.3995

  • Strongin, R.G.: Numerical methods in multiextremal problems. Nauka, Moscow, USSR (1978)

    Google Scholar 

  • Strongin, R.G.: Algorithms for multi-extremal mathematical programming problems employing the set of joint space-filling curves. J. Global Optim. 2, 357–378 (1992). https://doi.org/10.1007/BF00122428

    Article  MathSciNet  MATH  Google Scholar 

  • Torn, A.A.: A search clustering approach to global optimization. Towards Global Optim. 2 (1978)

    Google Scholar 

  • Ulmer, H., Streichert, F., Zell, A.: Evolution strategies assisted by Gaussian processes with improved preselection criterion. In: The Congress on Evolutionary Computation, CEC'03, vol. 1, pp. 692–699, IEEE (2003, December)

    Google Scholar 

  • Wang, J., Xu, J., & Wang, X.: Combination of hyperband and Bayesian optimization for hyperparameter optimization in deep learning (2018). arXiv preprint arXiv:1801.01596

  • Wang, L., Shan, S., Wang, G.G.: Mode-pursuing sampling method for global optimization on expensive black-box functions. Eng. Optim. 36, 419–438 (2004). https://doi.org/10.1080/03052150410001686486

    Article  Google Scholar 

  • Wilson, A.G., Dann, C., Lucas, C., Xing, E.P.: The human kernel. In: Advances in Neural Information Processing Systems, pp. 2854–2862 (2015)

    Google Scholar 

  • Wilson, A., Fern, A., Tadepalli, P.: Using trajectory data to improve bayesian optimization for reinforcement learning. J. Mach. Learn. Res. 15(1), 253–282 (2014)

    MathSciNet  MATH  Google Scholar 

  • Wu, C.M., Schulz, E., Speekenbrink, M., Nelson, J.D., Meder, B.: Generalization guides human exploration in vast decision spaces. Nat. Human Behav. 2(12), 915 (2018)

    Article  Google Scholar 

  • Zabinsky, Z.B., Smith, R.L.: Pure adaptive search in global optimization. Math. Program. 53(1–3), 323–338 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Zabinsky, Z.B., Wang, W., Prasetio, Y., Ghate, A., Yen, J.W.: Adaptive probabilistic branch and bound for level set approximation. In: Proceedings of the Winter Simulation Conference, pp. 4151–4162. Winter Simulation Conference (2011, December)

    Google Scholar 

  • Zabinsky, Z.B.: Random search algorithms. In: Wiley Encyclopedia of Operations Research and Management Science (2011)

    Google Scholar 

  • Zabinsky, Z.B.: Stochastic adaptive search methods: theory and implementation. In: Handbook of Simulation Optimization, pp. 293–318. Springer, New York (2015)

    Google Scholar 

  • Zhigljavsky, A.: Mathematical theory of global random search. LGU, Leningrad (1985)

    Google Scholar 

  • Zhigljavsky, A.: Branch and probability bound methods for global optimization. Informatica 1(1), 125–140 (1990)

    MathSciNet  MATH  Google Scholar 

  • Zhigljavsky, A., Zilinskas, A.: Stochastic Global Optimization, vol. 9. Springer Science & Business Media (2007)

    Google Scholar 

  • Zhigljavsky, A.A., Chekmasov, M.V.: Comparison of independent, stratified and random covering sample schemes in optimization problems. Math. Comput. Model. 23, 97–110 (1996). https://doi.org/10.1016/0895-7177(96)00043-X

    Article  MathSciNet  MATH  Google Scholar 

  • Zielinski, R.: A statistical estimate of the structure of multi-extremal problems. Math. Program. 21, 348–356 (1981). https://doi.org/10.1007/BF01584254

    Article  MathSciNet  MATH  Google Scholar 

  • Žilinskas, A., Zhigljavsky, A.: Stochastic global optimization: a review on the occasion of 25 years of Informatica. Informatica 27(2), 229–256 (2016)

    Article  MATH  Google Scholar 

  • Žilinskas, A., Gillard, J., Scammell, M., Zhigljavsky, A.: Multistart with early termination of descents. J. Glob. Optim. 1–16 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Archetti .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Archetti, F., Candelieri, A. (2019). From Global Optimization to Optimal Learning. In: Bayesian Optimization and Data Science . SpringerBriefs in Optimization. Springer, Cham. https://doi.org/10.1007/978-3-030-24494-1_2

Download citation

Publish with us

Policies and ethics