Skip to main content

Frailty and Sarcopenia in the Critically Ill Patient with Cirrhosis

  • Chapter
  • First Online:
The Critically Ill Cirrhotic Patient

Abstract

Frailty and sarcopenia increase the risk of critical illness among patients with cirrhosis. In this chapter, we review the diagnosis, implication, and management of frailty and sarcopenia in the critical care setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Norman K, Kirchner H, Lochs H, Pirlich M. Malnutrition affects quality of life in gastroenterology patients. World J Gastroenterol: WJG. 2006;12(21):3380.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sam J, Nguyen GC. Protein–calorie malnutrition as a prognostic indicator of mortality among patients hospitalized with cirrhosis and portal hypertension. Liver Int. 2009;29(9):1396–402.

    Article  PubMed  Google Scholar 

  3. Cederholm T, Barazzoni R, Austin P, Ballmer P, Biolo G, Bischoff SC, et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr. 2017;36(1):49–64.

    Article  CAS  PubMed  Google Scholar 

  4. Jensen GL. Global leadership conversation: addressing malnutrition. JPEN J Parenter Enteral Nutr. 2016;40(4):455–7.

    Article  PubMed  Google Scholar 

  5. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249–56.

    Article  PubMed  Google Scholar 

  6. Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, et al. Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc. 2011;12(6):403–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cruz-Jentoft A. European Working Group on Sarcopenia in Older People: Sarcopenia: European consensus on definition and diagnosis. Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–23.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Muscaritoli M, Anker S, Argiles J, Aversa Z, Bauer J, Biolo G, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr. 2010;29(2):154–9.

    Article  CAS  PubMed  Google Scholar 

  9. Trivedi HD, Tapper EB. Interventions to improve physical function and prevent adverse events in cirrhosis. Gastroenterol Rep (Oxf). 2018;6(1):13–20.

    Article  Google Scholar 

  10. Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L. Sarcopenic obesity-definition, etiology and consequences. Curr Opin Clin Nutr Metab Care. 2008;11(6):693.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol Ser A Biol Med Sci. 2001;56(3):M146–M57.

    Article  CAS  Google Scholar 

  12. Tapper EB, Martinez-Macias R, Duarte-Rojo A. Is exercise beneficial and safe in patients with cirrhosis and portal hypertension? Curr Hepatol Rep. 2018:1–9.

    Google Scholar 

  13. Tapper EB, Konerman M, Murphy S, Sonnenday CJ. Hepatic encephalopathy impacts the predictive value of the Fried Frailty Index. Am J Transplant. 2018;18(10):2566–70.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tapper EB, Finkelstein D, Mittleman MA, Piatkowski G, Lai M. Standard assessments of frailty are validated predictors of mortality in hospitalized patients with cirrhosis. Hepatology. 2015;62(2):584–90.

    Article  PubMed  Google Scholar 

  15. Caly WR, Strauss E, Carrilho FJ, Laudanna AA. Different degrees of malnutrition and immunological alterations according to the aetiology of cirrhosis: a prospective and sequential study. Nutr J. 2003;2:10.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Merli M, Riggio O, Dally L. Does malnutrition affect survival in cirrhosis? PINC (Policentrica Italiana Nutrizione Cirrosi). Hepatology. 1996;23(5):1041–6.

    Article  CAS  PubMed  Google Scholar 

  17. Merli M, Giusto M, Gentili F, Novelli G, Ferretti G, Riggio O, et al. Nutritional status: its influence on the outcome of patients undergoing liver transplantation. Liver Int. 2010;30(2):208–14.

    Article  CAS  PubMed  Google Scholar 

  18. Merli M, Giusto M, Lucidi C, Giannelli V, Pentassuglio I, Di Gregorio V, et al. Muscle depletion increases the risk of overt and minimal hepatic encephalopathy: results of a prospective study. Metab Brain Dis. 2013;28(2):281–4.

    Article  CAS  PubMed  Google Scholar 

  19. Huisman EJ, Trip EJ, Siersema PD, van Hoek B, van Erpecum KJ. Protein energy malnutrition predicts complications in liver cirrhosis. Eur J Gastroenterol Hepatol. 2011;23(11):982–9.

    Article  CAS  PubMed  Google Scholar 

  20. Lai JC, Feng S, Terrault NA, Lizaola B, Hayssen H, Covinsky K. Frailty predicts waitlist mortality in liver transplant candidates. Am J Transplant. 2014;14(8):1870–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Montano-Loza AJ, Meza-Junco J, Prado CM, Lieffers JR, Baracos VE, Bain VG, et al. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol. 2012;10(2):166–73, 73.e1.

    Article  PubMed  Google Scholar 

  22. Lai JC, Rahimi RS, Verna EC, Kappus MR, Dunn MA, McAdams-DeMarco M, Haugen CE, Volk ML, Duarte-Rojo A, Ganger DR, O’Leary JG, Dodge JL, Ladner D, Segev DL. Frailty associated with waitlist mortality independent of ascites and hepatic encephalopathy in a multicenter study. Gastroenterology. 2019;156(6):1675–82. https://doi.org/10.1053/j.gastro.2019.01.028. Epub 2019 Jan 19.

    Article  PubMed  Google Scholar 

  23. Durand F, Buyse S, Francoz C, Laouenan C, Bruno O, Belghiti J, et al. Prognostic value of muscle atrophy in cirrhosis using psoas muscle thickness on computed tomography. J Hepatol. 2014;60(6):1151–7.

    Article  PubMed  Google Scholar 

  24. Cosqueric G, Sebag A, Ducolombier C, Thomas C, Piette F, Weill-Engerer S. Sarcopenia is predictive of nosocomial infection in care of the elderly. Br J Nutr. 2006;96(5):895–901.

    Article  CAS  PubMed  Google Scholar 

  25. Fernandez J, Acevedo J, Castro M, Garcia O, de Lope CR, Roca D, et al. Prevalence and risk factors of infections by multiresistant bacteria in cirrhosis: a prospective study. Hepatology. 2012;55(5):1551–61.

    Article  PubMed  Google Scholar 

  26. Harrison J, McKiernan J, Neuberger JM. A prospective study on the effect of recipient nutritional status on outcome in liver transplantation. Transpl Int. 1997;10(5):369–74.

    Article  CAS  PubMed  Google Scholar 

  27. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457–65.

    Article  CAS  PubMed  Google Scholar 

  28. Krell RW, Kaul DR, Martin AR, Englesbe MJ, Sonnenday CJ, Cai S, et al. Association between sarcopenia and the risk of serious infection among adults undergoing liver transplantation. Liver Transpl. 2013;19(12):1396–402.

    Article  PubMed  Google Scholar 

  29. Sinclair M, Gow PJ, Grossmann M, Angus PW. Review article: sarcopenia in cirrhosis--aetiology, implications and potential therapeutic interventions. Aliment Pharmacol Ther. 2016;43(7):765–77.

    Article  CAS  PubMed  Google Scholar 

  30. Stephenson GR, Moretti EW, El-Moalem H, Clavien PA, Tuttle-Newhall JE. Malnutrition in liver transplant patients: preoperative subjective global assessment is predictive of outcome after liver transplantation. Transplantation. 2001;72(4):666–70.

    Article  CAS  PubMed  Google Scholar 

  31. DiMartini A, Cruz RJ Jr, Dew MA, Myaskovsky L, Goodpaster B, Fox K, et al. Muscle mass predicts outcomes following liver transplantation. Liver Transpl. 2013;19(11):1172–80.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dasarathy S. Posttransplant sarcopenia: an underrecognized early consequence of liver transplantation. Dig Dis Sci. 2013;58(11):3103–11.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Englesbe MJ, Patel SP, He K, Lynch RJ, Schaubel DE, Harbaugh C, et al. Sarcopenia and mortality after liver transplantation. J Am Coll Surg. 2010;211(2):271–8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Riggio O, Andreoli A, Diana F, Fiore P, Meddi P, Lionetti R, et al. Whole body and regional body composition analysis by dual-energy X-ray absorptiometry in cirrhotic patients. Eur J Clin Nutr. 1997;51(12):810–4.

    Article  CAS  PubMed  Google Scholar 

  35. Hung CH, Wang JH, Hu TH, Chen CH, Chang KC, Yen YH, et al. Insulin resistance is associated with hepatocellular carcinoma in chronic hepatitis C infection. World J Gastroenterol. 2010;16(18):2265–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hayashi F, Matsumoto Y, Momoki C, Yuikawa M, Okada G, Hamakawa E, et al. Physical inactivity and insufficient dietary intake are associated with the frequency of sarcopenia in patients with compensated viral liver cirrhosis. Hepatol Res. 2013;43(12):1264–75.

    Article  PubMed  Google Scholar 

  37. Tsiaousi ET, Hatzitolios AI, Trygonis SK, Savopoulos CG. Malnutrition in end stage liver disease: recommendations and nutritional support. J Gastroenterol Hepatol. 2008;23(4):527–33.

    Article  PubMed  Google Scholar 

  38. Aqel BA, Scolapio JS, Dickson RC, Burton DD, Bouras EP. Contribution of ascites to impaired gastric function and nutritional intake in patients with cirrhosis and ascites. Clin Gastroenterol Hepatol. 2005;3(11):1095–100.

    Article  PubMed  Google Scholar 

  39. Izbeki F, Kiss I, Wittmann T, Varkonyi TT, Legrady P, Lonovics J. Impaired accommodation of proximal stomach in patients with alcoholic liver cirrhosis. Scand J Gastroenterol. 2002;37(12):1403–10.

    Article  CAS  PubMed  Google Scholar 

  40. Madden AM, Bradbury W, Morgan MY. Taste perception in cirrhosis: its relationship to circulating micronutrients and food preferences. Hepatology. 1997;26(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  41. Kallwitz ER, Loy V, Mettu P, Von Roenn N, Berkes J, Cotler SJ. Physical activity and metabolic syndrome in liver transplant recipients. Liver Transpl. 2013;19(10):1125–31.

    PubMed  Google Scholar 

  42. Krasnoff JB, Vintro AQ, Ascher NL, Bass NM, Paul SM, Dodd MJ, et al. A randomized trial of exercise and dietary counseling after liver transplantation. Am J Transplant. 2006;6(8):1896–905.

    Article  CAS  PubMed  Google Scholar 

  43. Romiti A, Merli M, Martorano M, Parrilli G, Martino F, Riggio O, et al. Malabsorption and nutritional abnormalities in patients with liver cirrhosis. Ital J Gastroenterol. 1990;22(3):118–23.

    CAS  PubMed  Google Scholar 

  44. Quigley EM, Stanton C, Murphy EF. The gut microbiota and the liver. Pathophysiological and clinical implications. J Hepatol. 2013;58(5):1020–7.

    Article  PubMed  Google Scholar 

  45. Han HQ, Zhou X, Mitch WE, Goldberg AL. Myostatin/activin pathway antagonism: molecular basis and therapeutic potential. Int J Biochem Cell Biol. 2013;45(10):2333–47.

    Article  CAS  PubMed  Google Scholar 

  46. Qiu J, Thapaliya S, Runkana A, Yang Y, Tsien C, Mohan ML, et al. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB–mediated mechanism. Proc Natl Acad Sci. 2013;110(45):18162–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Davuluri G, Krokowski D, Guan BJ, Kumar A, Thapaliya S, Singh D, et al. Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of l-leucine in cirrhosis. J Hepatol. 2016;65(5):929–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kosenko E, Venediktova N, Kaminsky Y, Montoliu C, Felipo V. Sources of oxygen radicals in brain in acute ammonia intoxication in vivo. Brain Res. 2003;981(1–2):193–200.

    Article  CAS  PubMed  Google Scholar 

  49. Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem. 2002;277(34):30409–12.

    Article  CAS  PubMed  Google Scholar 

  50. Holecek M. Ammonia and amino acid profiles in liver cirrhosis: effects of variables leading to hepatic encephalopathy. Nutrition. 2015;31(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  51. Bamman MM, Shipp JR, Jiang J, Gower BA, Hunter GR, Goodman A, et al. Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. Am J Physiol Endocrinol Metab. 2001;280(3):E383–E90.

    Article  CAS  PubMed  Google Scholar 

  52. Matsumura T, Morinaga Y, Fujitani S, Takehana K, Nishitani S, Sonaka I. Oral administration of branched-chain amino acids activates the mTOR signal in cirrhotic rat liver. Hepatol Res. 2005;33(1):27–32.

    Article  CAS  PubMed  Google Scholar 

  53. Frost RA, Lang CH. Multifaceted role of insulin-like growth factors and mammalian target of rapamycin in skeletal muscle. Endocrinol Metab Clin. 2012;41(2):297–322.

    Article  CAS  Google Scholar 

  54. García PS, Cabbabe A, Kambadur R, Nicholas G, Csete M. Elevated myostatin levels in patients with liver disease: a potential contributor to skeletal muscle wasting. Anesth Analg. 2010;111(3):707–9.

    Article  PubMed  CAS  Google Scholar 

  55. Tsien C, Davuluri G, Singh D, Allawy A, Ten Have GA, Thapaliya S, et al. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology. 2015;61(6):2018–29.

    Article  CAS  PubMed  Google Scholar 

  56. Kovacheva EL, Sinha Hikim AP, Shen R, Sinha I, Sinha-Hikim I. Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, Notch, and Akt signaling pathways. Endocrinology. 2010;151(2):628–38.

    Article  CAS  PubMed  Google Scholar 

  57. Assy N, Pruzansky Y, Gaitini D, Orr ZS, Hochberg Z, Baruch Y. Growth hormone-stimulated IGF-1 generation in cirrhosis reflects hepatocellular dysfunction. J Hepatol. 2008;49(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  58. Muller MJ, Lautz HU, Plogmann B, Burger M, Korber J, Schmidt FW. Energy expenditure and substrate oxidation in patients with cirrhosis: the impact of cause, clinical staging and nutritional state. Hepatology. 1992;15(5):782–94.

    Article  CAS  PubMed  Google Scholar 

  59. Mathur S, Peng S, Gane EJ, McCall JL, Plank LD. Hypermetabolism predicts reduced transplant-free survival independent of MELD and Child-Pugh scores in liver cirrhosis. Nutrition. 2007;23(5):398–403.

    Article  CAS  PubMed  Google Scholar 

  60. Selberg O, Bottcher J, Tusch G, Pichlmayr R, Henkel E, Muller MJ. Identification of high- and low-risk patients before liver transplantation: a prospective cohort study of nutritional and metabolic parameters in 150 patients. Hepatology. 1997;25(3):652–7.

    Article  CAS  PubMed  Google Scholar 

  61. Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol. 2014;60(1):197–209.

    Article  PubMed  Google Scholar 

  62. Tsien CD, McCullough AJ, Dasarathy S. Late evening snack: exploiting a period of anabolic opportunity in cirrhosis. J Gastroenterol Hepatol. 2012;27(3):430–41.

    Article  CAS  PubMed  Google Scholar 

  63. Sarin SK, Dhingra N, Bansal A, Malhotra S, Guptan RC. Dietary and nutritional abnormalities in alcoholic liver disease: a comparison with chronic alcoholics without liver disease. Am J Gastroenterol. 1997;92(5):777–83.

    CAS  PubMed  Google Scholar 

  64. Owen O, Trapp V, Reichard G, Mozzoli M, Moctezuma J, Paul P, et al. Nature and quantity of fuels consumed in patients with alcoholic cirrhosis. J Clin Invest. 1983;72(5):1821–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dichi JB, Dichi I, Maio R, Correa CR, Angeleli AY, Bicudo MH, et al. Whole-body protein turnover in malnourished patients with child class B and C cirrhosis on diets low to high in protein energy. Nutrition. 2001;17(3):239–42.

    Article  CAS  PubMed  Google Scholar 

  66. Morrison W, Bouchier I, Gibson J, Rennie M. Skeletal muscle and whole-body protein turnover in cirrhosis. Clin Sci. 1990;78(6):613–9.

    Article  CAS  Google Scholar 

  67. Glass C, Hipskind P, Tsien C, Malin SK, Kasumov T, Shah SN, et al. Sarcopenia and a physiologically low respiratory quotient in patients with cirrhosis: a prospective controlled study. J Appl Physiol. 2013;114(5):559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Müller MJ, Böttcher J, Selberg O, Weselmann S, Böker KH, Schwarze M, et al. Hypermetabolism in clinically stable patients with liver cirrhosis. Am J Clin Nutr. 1999;69(6):1194–201.

    Article  PubMed  Google Scholar 

  69. Dam G, Sørensen M, Buhl M, Sandahl TD, Møller N, Ott P, et al. Muscle metabolism and whole blood amino acid profile in patients with liver disease. Scand J Clin Lab Invest. 2015;75(8):674–80.

    PubMed  Google Scholar 

  70. Dejong CH, van de Poll MC, Soeters PB, Jalan R, Olde Damink SW. Aromatic amino acid metabolism during liver failure. J Nutr. 2007;137(6):1579S–85S.

    Article  CAS  PubMed  Google Scholar 

  71. Hernaez R, Sola E, Moreau R, Gines P. Acute-on-chronic liver failure: an update. Gut. 2017;66(3):541–53.

    Article  CAS  PubMed  Google Scholar 

  72. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16(4):343–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tilg H, Wilmer A, Vogel W, Herold M, Nölchen B, Judmaier G, et al. Serum levels of cytokines in chronic liver diseases. Gastroenterology. 1992;103(1):264–74.

    Article  CAS  PubMed  Google Scholar 

  74. Lin S-Y, Chen W-Y, Huang C-J, WH-H S. Activation of ubiquitin-proteasome pathway is involved in skeletal muscle wasting in a rat model with biliary cirrhosis: potential role of TNF-α. Am J Physiol Endocrinol Metab. 2005;288(3):E493–501.

    Article  CAS  PubMed  Google Scholar 

  75. Beyer I, Mets T, Bautmans I. Chronic low-grade inflammation and age-related sarcopenia. Curr Opin Clin Nutr Metab Care. 2012;15(1):12–22.

    Article  CAS  PubMed  Google Scholar 

  76. Tajika M, Kato M, Mohri H, Miwa Y, Kato T, Ohnishi H, et al. Prognostic value of energy metabolism in patients with viral liver cirrhosis. Nutrition. 2002;18(3):229–34.

    Article  CAS  PubMed  Google Scholar 

  77. Nutritional status in cirrhosis. Italian Multicentre Cooperative Project on Nutrition in Liver Cirrhosis. J Hepatol. 1994;21(3):317–25.

    Google Scholar 

  78. Campillo B, Richardet JP, Scherman E, Bories PN. Evaluation of nutritional practice in hospitalized cirrhotic patients: results of a prospective study. Nutrition. 2003;19(6):515–21.

    Article  PubMed  Google Scholar 

  79. Abad-Lacruz A, Cabre E, Gonzalez-Huix F, Fernandez-Banares F, Esteve M, Planas R, et al. Routine tests of renal function, alcoholism, and nutrition improve the prognostic accuracy of Child-Pugh score in nonbleeding advanced cirrhotics. Am J Gastroenterol. 1993;88(3):382–7.

    CAS  PubMed  Google Scholar 

  80. Alberino F, Gatta A, Amodio P, Merkel C, Di Pascoli L, Boffo G, et al. Nutrition and survival in patients with liver cirrhosis. Nutrition. 2001;17(6):445–50.

    Article  CAS  PubMed  Google Scholar 

  81. Heymsfield SB, Casper K. Anthropometric assessment of the adult hospitalized patient. JPEN J Parenter Enteral Nutr. 1987;11(5 Suppl):36s–41s.

    Article  CAS  PubMed  Google Scholar 

  82. Ulijaszek SJ, Kerr DA. Anthropometric measurement error and the assessment of nutritional status. Br J Nutr. 1999;82(3):165–77.

    Article  CAS  PubMed  Google Scholar 

  83. Chien MY, Huang TY, Wu YT. Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in community-dwelling elderly people in Taiwan. J Am Geriatr Soc. 2008;56(9):1710–5.

    Article  PubMed  Google Scholar 

  84. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, et al. Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr. 2004;23(5):1226–43.

    Article  PubMed  Google Scholar 

  85. Fernandes SA, Bassani L, Nunes FF, Aydos ME, Alves AV, Marroni CA. Nutritional assessment in patients with cirrhosis. Arq Gastroenterol. 2012;49(1):19–27.

    Article  PubMed  Google Scholar 

  86. Selberg O, Selberg D. Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. Eur J Appl Physiol. 2002;86(6):509–16.

    Article  CAS  PubMed  Google Scholar 

  87. Cardinal TR, Wazlawik E, Bastos JL, Nakazora LM, Scheunemann L. Standardized phase angle indicates nutritional status in hospitalized preoperative patients. Nutr Res. 2010;30(9):594–600.

    Article  CAS  PubMed  Google Scholar 

  88. Oliveira CM, Kubrusly M, Mota RS, Silva CA, Choukroun G, Oliveira VN. The phase angle and mass body cell as markers of nutritional status in hemodialysis patients. J Ren Nutr. 2010;20(5):314–20.

    Article  PubMed  Google Scholar 

  89. Bosaeus I, Wilcox G, Rothenberg E, Strauss BJ. Skeletal muscle mass in hospitalized elderly patients: comparison of measurements by single-frequency BIA and DXA. Clin Nutr. 2014;33(3):426–31.

    Article  PubMed  Google Scholar 

  90. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab. 2008;33(5):997–1006.

    Article  PubMed  Google Scholar 

  91. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9(7):629–35.

    Article  PubMed  Google Scholar 

  92. Lee C, Raymond E, Derstine BA, Glazer JM, Goulson R, Rajasekaran A, et al. Morphomic malnutrition score: a standardized screening tool for severe malnutrition in adults. JPEN J Parenter Enteral Nutr. 2018;42(8):1263–71.

    Article  PubMed  Google Scholar 

  93. Derstine BA, Holcombe SA, Ross BE, Wang NC, Su GL, Wang SC. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci Rep. 2018;8(1):11369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Beneke R, Neuerburg J, Bohndorf K. Muscle cross-section measurement by magnetic resonance imaging. Eur J Appl Physiol Occup Physiol. 1991;63(6):424–9.

    Article  CAS  PubMed  Google Scholar 

  95. Chen Z, Wang Z, Lohman T, Heymsfield SB, Outwater E, Nicholas JS, et al. Dual-energy X-ray absorptiometry is a valid tool for assessing skeletal muscle mass in older women. J Nutr. 2007;137(12):2775–80.

    Article  CAS  PubMed  Google Scholar 

  96. Wang ZM, Visser M, Ma R, Baumgartner RN, Kotler D, Gallagher D, et al. Skeletal muscle mass: evaluation of neutron activation and dual-energy X-ray absorptiometry methods. J Appl Physiol. 1996;80(3):824–31.

    Article  CAS  PubMed  Google Scholar 

  97. Samoylova ML, Covinsky KE, Haftek M, Kuo S, Roberts JP, Lai JC. Disability in patients with end-stage liver disease: results from the functional assessment in liver transplantation study. Liver Transpl. 2017;23(3):292–8.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Orman ES, Ghabril M, Chalasani N. Poor performance status is associated with increased mortality in patients with cirrhosis. Clin Gastroenterol Hepatol. 2016;14(8):1189–95.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Tandon P, Reddy KR, O'leary JG, Garcia-Tsao G, Abraldes JG, Wong F, et al. A Karnofsky performance status–based score predicts death after hospital discharge in patients with cirrhosis. Hepatology. 2017;65(1):217–24.

    Article  PubMed  Google Scholar 

  100. Thuluvath PJ, Thuluvath AJ, Savva Y. Karnofsky performance status before and after liver transplantation predicts graft and patient survival. J Hepatol. 2018;69:818.

    Article  PubMed  Google Scholar 

  101. Hirsch S, Bunout D, de la Maza P, Iturriaga H, Petermann M, Icazar G, et al. Controlled trial on nutrition supplementation in outpatients with symptomatic alcoholic cirrhosis. JPEN J Parenter Enteral Nutr. 1993;17(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  102. Alvares-da-Silva MR, Reverbel da Silveira T. Comparison between handgrip strength, subjective global assessment, and prognostic nutritional index in assessing malnutrition and predicting clinical outcome in cirrhotic outpatients. Nutrition. 2005;21(2):113–7.

    Article  PubMed  Google Scholar 

  103. Sundaram V, Lim J, Tholey DM, Iriana S, Kim I, Manne V, et al. The Braden scale, a standard tool for assessing pressure ulcer risk, predicts early outcomes after liver transplantation. Liver Transpl. 2017;23:1153.

    Article  PubMed  Google Scholar 

  104. Derck JE, Thelen AE, Cron DC, Friedman JF, Gerebics AD, Englesbe MJ, et al. Quality of life in liver transplant candidates: frailty is a better indicator than severity of liver disease. Transplantation. 2015;99(2):340–4.

    Article  PubMed  Google Scholar 

  105. Cron D, Friedman J, Winder G, Thelen A, Derck J, Fakhoury J, et al. Depression and frailty in patients with end-stage liver disease referred for transplant evaluation. Am J Transplant. 2016;16(6):1805–11.

    Article  CAS  PubMed  Google Scholar 

  106. Campillo B, Bories PN, Pornin B, Devanlay M. Influence of liver failure, ascites, and energy expenditure on the response to oral nutrition in alcoholic liver cirrhosis. Nutrition. 1997;13(7):613–21.

    Article  CAS  PubMed  Google Scholar 

  107. Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. 2016;65(6):1232–44.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Dasarathy S. Nutrition and alcoholic liver disease: effects of alcoholism on nutrition, effects of nutrition on alcoholic liver disease, and nutritional therapies for alcoholic liver disease. Clin Liver Dis. 2016;20(3):535–50.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Plank LD, Gane EJ, Peng S, Muthu C, Mathur S, Gillanders L, et al. Nocturnal nutritional supplementation improves total body protein status of patients with liver cirrhosis: a randomized 12-month trial. Hepatology. 2008;48(2):557–66.

    Article  PubMed  Google Scholar 

  110. Feinberg J, Nielsen EE, Korang SK, Halberg Engell K, Nielsen MS, Zhang K, et al. Nutrition support in hospitalised adults at nutritional risk. Cochrane Database Syst Rev. 2017;(5):CD011598.

    Google Scholar 

  111. Ndahimana D, Kim EK. Energy requirements in critically ill patients. Clin Nutr Res. 2018;7(2):81–90.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Faisy C, Lerolle N, Dachraoui F, Savard JF, Abboud I, Tadie JM, et al. Impact of energy deficit calculated by a predictive method on outcome in medical patients requiring prolonged acute mechanical ventilation. Br J Nutr. 2009;101(7):1079–87.

    Article  CAS  PubMed  Google Scholar 

  113. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.

    Article  PubMed  Google Scholar 

  114. Butterworth RF. Thiamine deficiency-related brain dysfunction in chronic liver failure. Metab Brain Dis. 2009;24(1):189–96.

    Article  CAS  PubMed  Google Scholar 

  115. McClain CJ, Marsano L, Burk RF, Bacon B. Trace metals in liver disease. Semin Liver Dis. 1991;11(4):321–39.

    Article  CAS  PubMed  Google Scholar 

  116. Riggio O, Merli M, Capocaccia L, Caschera M, Zullo A, Pinto G, et al. Zinc supplementation reduces blood ammonia and increases liver ornithine transcarbamylase activity in experimental cirrhosis. Hepatology. 1992;16(3):785–9.

    Article  CAS  PubMed  Google Scholar 

  117. Matsuoka S, Matsumura H, Nakamura H, Oshiro S, Arakawa Y, Hayashi J, et al. Zinc supplementation improves the outcome of chronic hepatitis C and liver cirrhosis. J Clin Biochem Nutr. 2009;45(3):292–303.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lang CH, Frost RA, Deshpande N, Kumar V, Vary TC, Jefferson LS, et al. Alcohol impairs leucine-mediated phosphorylation of 4E-BP1, S6K1, eIF4G, and mTOR in skeletal muscle. Am J Physiol Endocrinol Metab. 2003;285(6):E1205–15.

    Article  CAS  PubMed  Google Scholar 

  119. Gluud LL, Dam G, Les I, Marchesini G, Borre M, Aagaard NK, et al. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev. 2017;5

    Google Scholar 

  120. Marchesini G, Bianchi G, Merli M, Amodio P, Panella C, Loguercio C, et al. Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: a double-blind, randomized trial. Gastroenterology. 2003;124(7):1792–801.

    Article  CAS  PubMed  Google Scholar 

  121. Nakaya Y, Okita K, Suzuki K, Moriwaki H, Kato A, Miwa Y, et al. BCAA-enriched snack improves nutritional state of cirrhosis. Nutrition. 2007;23(2):113–20.

    Article  CAS  PubMed  Google Scholar 

  122. Urata Y, Okita K, Korenaga K, Uchida K, Yamasaki T, Sakaida I. The effect of supplementation with branched-chain amino acids in patients with liver cirrhosis. Hepatol Res. 2007;37(7):510–6.

    Article  CAS  PubMed  Google Scholar 

  123. Trivedi HD, Tapper EB. Interventions to improve physical function and prevent adverse events in cirrhosis. Gastroenterol Rep. 2018;6(1):13–20.

    Article  Google Scholar 

  124. Arias-Fernandez P, Romero-Martin M, Gomez-Salgado J, Fernandez-Garcia D. Rehabilitation and early mobilization in the critical patient: systematic review. J Phys Ther Sci. 2018;30(9):1193–201.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Schaller SJ, Anstey M, Blobner M, Edrich T, Grabitz SD, Gradwohl-Matis I, et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet. 2016;388(10052):1377–88.

    Article  PubMed  Google Scholar 

  126. Qiu J, Tsien C, Thapalaya S, Narayanan A, Weihl CC, Ching JK, et al. Hyperammonemia-mediated autophagy in skeletal muscle contributes to sarcopenia of cirrhosis. Am J Physiol Endocrinol Metab. 2012;303(8):E983–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Holecek M, Sprongl L, Tichy M. Effect of hyperammonemia on leucine and protein metabolism in rats. Metab Clin Exp. 2000;49(10):1330–4.

    Article  CAS  PubMed  Google Scholar 

  128. Rose CF. Ammonia-lowering strategies for the treatment of hepatic encephalopathy. Clin Pharmacol Ther. 2012;92(3):321–31.

    Article  CAS  PubMed  Google Scholar 

  129. Thomsen KL, Sandahl TD, Holland-Fischer P, Jessen N, Frystyk J, Flyvbjerg A, et al. Changes in adipokines after transjugular intrahepatic porto-systemic shunt indicate an anabolic shift in metabolism. Clin Nutr. 2012;31(6):940–5.

    Article  CAS  PubMed  Google Scholar 

  130. Tsien C, Shah SN, McCullough AJ, Dasarathy S. Reversal of sarcopenia predicts survival after a transjugular intrahepatic portosystemic stent. Eur J Gastroenterol Hepatol. 2013;25(1):85–93.

    Article  PubMed  Google Scholar 

  131. Handelsman DJ, Strasser S, McDonald JA, Conway AJ, McCaughan GW. Hypothalamic-pituitary-testicular function in end-stage non-alcoholic liver disease before and after liver transplantation. Clin Endocrinol (Oxf). 1995;43(3):331–7.

    Article  CAS  Google Scholar 

  132. Grossmann M, Hoermann R, Gani L, Chan I, Cheung A, Gow PJ, et al. Low testosterone levels as an independent predictor of mortality in men with chronic liver disease. Clin Endocrinol (Oxf). 2012;77(2):323–8.

    Article  CAS  Google Scholar 

  133. Zietz B, Lock G, Plach B, Drobnik W, Grossmann J, Schölmerich J, et al. Dysfunction of the hypothalamic-pituitary-glandular axes and relation to Child-Pugh classification in male patients with alcoholic and virus-related cirrhosis. Eur J Gastroenterol Hepatol. 2003;15(5):495–501.

    CAS  PubMed  Google Scholar 

  134. Sinclair M, Grossmann M, Angus PW, Hoermann R, Hey P, Scodellaro T, et al. Low testosterone as a better predictor of mortality than sarcopenia in men with advanced liver disease. J Gastroenterol Hepatol. 2016;31(3):661–7.

    Article  CAS  PubMed  Google Scholar 

  135. Yurci A, Yucesoy M, Unluhizarci K, Torun E, Gursoy S, Baskol M, et al. Effects of testosterone gel treatment in hypogonadal men with liver cirrhosis. Clin Res Hepatol Gastroenterol. 2011;35(12):845–54.

    Article  CAS  PubMed  Google Scholar 

  136. Baruch Y, Assy N, Amit T, Krivoy N, Strickovsky D, Orr ZS, et al. Spontaneous pulsatility and pharmacokinetics of growth hormone in liver cirrhotic patients. J Hepatol. 1998;29(4):559–64.

    Article  CAS  PubMed  Google Scholar 

  137. Sinclair M, Grossmann M, Gow PJ, Angus PW. Testosterone in men with advanced liver disease: abnormalities and implications. J Gastroenterol Hepatol. 2015;30(2):244–51.

    Article  PubMed  Google Scholar 

  138. Wallace JD, Abbott-Johnson WJ, Crawford DH, Barnard R, Potter JM, Cuneo RC. GH treatment in adults with chronic liver disease: a randomized, double-blind, placebo-controlled, cross-over study. J Clin Endocrinol Metab. 2002;87(6):2751–9.

    Article  CAS  PubMed  Google Scholar 

  139. Becker C, Lord SR, Studenski SA, Warden SJ, Fielding RA, Recknor CP, et al. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol. 2015;3(12):948–57.

    Article  CAS  PubMed  Google Scholar 

  140. Lucero C, Verna EC. The role of sarcopenia and frailty in hepatic encephalopathy management. Clin Liver Dis. 2015;19(3):507–28.

    Article  PubMed  Google Scholar 

  141. Tsien C, Garber A, Narayanan A, Shah SN, Barnes D, Eghtesad B, et al. Post-liver transplantation sarcopenia in cirrhosis: a prospective evaluation. J Gastroenterol Hepatol. 2014;29(6):1250–7.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Bergerson JT, Lee JG, Furlan A, Sourianarayanane A, Fetzer DT, Tevar AD, et al. Liver transplantation arrests and reverses muscle wasting. Clin Transpl. 2015;29(3):216–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliot B. Tapper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hassan, A., Tapper, E.B. (2020). Frailty and Sarcopenia in the Critically Ill Patient with Cirrhosis. In: Rahimi, R. (eds) The Critically Ill Cirrhotic Patient. Springer, Cham. https://doi.org/10.1007/978-3-030-24490-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24490-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24489-7

  • Online ISBN: 978-3-030-24490-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics