Skip to main content

Renal Dysfunction in Patients with Cirrhosis

  • Chapter
  • First Online:
The Critically Ill Cirrhotic Patient

Abstract

Acute kidney injury (AKI) is very common in critically ill cirrhotic patients. The most common phenotypes are prerenal failure, acute tubular necrosis (ATN), and hepatorenal syndrome (HRS). Early distinction between ATN and HRS is important as vasopressors are justified in patients with HRS. Biomarkers can be useful in differentiating ATN from HRS at an early stage; however, a substantial proportion of patients may be misclassified. In the long term, posttransplant glomerular filtration rate is lower in patients transplanted with pretransplant renal dysfunction. Since kidney biopsy is impractical in cirrhosis, novel biomarkers are needed to assess more precisely the potential for kidney recovery after liver transplantation alone. Combined liver and kidney transplantation is an option but criteria have to be refined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsien CD, Rabie R, Wong F. Acute kidney injury in decompensated cirrhosis. Gut. 2013;62:131–7.

    Article  PubMed  Google Scholar 

  2. Barreto R, Fagundes C, Guevara M, et al. Type-1 hepatorenal syndrome associated with infections in cirrhosis: natural history, outcome of kidney function, and survival. Hepatology. 2014;59:1505–13.

    Article  PubMed  Google Scholar 

  3. Piano S, Rosi S, Maresio G, et al. Evaluation of the Acute Kidney Injury Network criteria in hospitalized patients with cirrhosis and ascites. J Hepatol. 2013;59:482–9.

    Article  PubMed  Google Scholar 

  4. Durand F, Graupera I, Gines P, Olson JC, Nadim MK. Pathogenesis of hepatorenal syndrome: implications for therapy. Am J Kidney Dis. 2016;67:318–28.

    Article  CAS  PubMed  Google Scholar 

  5. Adebayo D, Morabito V, Davenport A, Jalan R. Renal dysfunction in cirrhosis is not just a vasomotor nephropathy. Kidney Int. 2015;87:509–15.

    Article  PubMed  Google Scholar 

  6. Gines P, Schrier RW. Renal failure in cirrhosis. N Engl J Med. 2009;361:1279–90.

    Article  CAS  PubMed  Google Scholar 

  7. Stadlbauer V, Wright GA, Banaji M, et al. Relationship between activation of the sympathetic nervous system and renal blood flow autoregulation in cirrhosis. Gastroenterology. 2008;134:111–9.

    Article  PubMed  Google Scholar 

  8. Belcher JM, Garcia-Tsao G, Sanyal AJ, et al. Association of AKI with mortality and complications in hospitalized patients with cirrhosis. Hepatology. 2013;57:753–62.

    Article  CAS  PubMed  Google Scholar 

  9. Nadim MK, Genyk YS, Tokin C, et al. Impact of the etiology of acute kidney injury on outcomes following liver transplantation: acute tubular necrosis versus hepatorenal syndrome. Liver Transpl. 2012;18:539–48.

    Article  PubMed  Google Scholar 

  10. Bahirwani R, Campbell MS, Siropaides T, et al. Transplantation: impact of pretransplant renal insufficiency. Liver Transpl. 2008;14:665–71.

    Article  PubMed  Google Scholar 

  11. Hilmi IA, Damian D, Al-Khafaji A, et al. Acute kidney injury following orthotopic liver transplantation: incidence, risk factors, and effects on patient and graft outcomes. Br J Anaesth. 2015;114:919.

    Article  CAS  PubMed  Google Scholar 

  12. Boyer TD, Sanyal AJ, Garcia-Tsao G, et al. Impact of liver transplantation on the survival of patients treated for hepatorenal syndrome type 1. Liver Transpl. 2011;17:1328–32.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tan HK, Marquez M, Wong F, Renner EL. Pretransplant type 2 hepatorenal syndrome is associated with persistently impaired renal function after liver transplantation. Transplantation. 2015;99:1441–6.

    Article  CAS  PubMed  Google Scholar 

  14. Davenport A, Cholongitas E, Xirouchakis E, Burroughs AK. Pitfalls in assessing renal function in patients with cirrhosis–potential inequity for access to treatment of hepatorenal failure and liver transplantation. Nephrol Dial Transplant. 2011;26:2735–42.

    Article  PubMed  Google Scholar 

  15. Macedo E, Bouchard J, Soroko SH, et al. Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit Care. 2010;14:R82.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu KD, Thompson BT, Ancukiewicz M, et al. Acute kidney injury in patients with acute lung injury: impact of fluid accumulation on classification of acute kidney injury and associated outcomes. Crit Care Med. 2011;39:2665–71.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xirouchakis E, Marelli L, Cholongitas E, et al. Comparison of cystatin C and creatinine-based glomerular filtration rate formulas with 51Cr-EDTA clearance in patients with cirrhosis. Clin J Am Soc Nephrol. 2011;6:84–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Proulx NL, Akbari A, Garg AX, Rostom A, Jaffey J, Clark HD. Measured creatinine clearance from timed urine collections substantially overestimates glomerular filtration rate in patients with liver cirrhosis: a systematic review and individual patient meta-analysis. Nephrol Dial Transplant. 2005;20:1617–22.

    Article  CAS  PubMed  Google Scholar 

  19. Francoz C, Glotz D, Moreau R, Durand F. The evaluation of renal function and disease in patients with cirrhosis. J Hepatol. 2010;52:605–13.

    Article  CAS  PubMed  Google Scholar 

  20. Francoz C, Nadim MK, Baron A, et al. Glomerular filtration rate equations for liver-kidney transplantation in patients with cirrhosis: validation of current recommendations. Hepatology. 2014;59:1514–21.

    Article  PubMed  Google Scholar 

  21. Gonwa TA, Jennings L, Mai ML, Stark PC, Levey AS, Klintmalm GB. Estimation of glomerular filtration rates before and after orthotopic liver transplantation: evaluation of current equations. Liver Transpl. 2004;10:301–9.

    Article  PubMed  Google Scholar 

  22. Asrani SK, Jennings LW, Trotter JF, Levitsky J, Nadim MK, Kim WR, Gonzalez SA, Fischbach B, Bahirwani R, Emmett M, Klintmalm G. A model for Glomerular Filtration Rate Assessment in Liver Disease (GRAIL) in the presence of renal dysfunction. Hepatology. 2019;69(3):1219–30. https://doi.org/10.1002/hep.30321. Epub 2019 Feb 20

    Article  CAS  PubMed  Google Scholar 

  23. Mindikoglu AL, Dowling TC, Weir MR, Seliger SL, Christenson RH, Magder LS. Performance of chronic kidney disease epidemiology collaboration creatinine-cystatin C equation for estimating kidney function in cirrhosis. Hepatology. 2014;59:1532–42.

    Article  CAS  PubMed  Google Scholar 

  24. De Souza V, Hadj-Aissa A, Dolomanova O, et al. Creatinine- versus cystatine C-based equations in assessing the renal function of candidates for liver transplantation with cirrhosis. Hepatology. 2014;59:1522–31.

    Article  PubMed  CAS  Google Scholar 

  25. Bragadottir G, Redfors B, Ricksten SE. Assessing glomerular filtration rate (GFR) in critically ill patients with acute kidney injury–true GFR versus urinary creatinine clearance and estimating equations. Crit Care. 2013;17:R108.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nadim MK, Kellum JA, Davenport A, et al. Hepatorenal syndrome: the 8th International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2012;16:R23.

    Article  PubMed  PubMed Central  Google Scholar 

  28. de Carvalho JR, Villela-Nogueira CA, Luiz RR, et al. Acute kidney injury network criteria as a predictor of hospital mortality in cirrhotic patients with ascites. J Clin Gastroenterol. 2012;46:e21–6.

    Article  PubMed  Google Scholar 

  29. Fagundes C, Barreto R, Guevara M, et al. A modified acute kidney injury classification for diagnosis and risk stratification of impairment of kidney function in cirrhosis. J Hepatol. 2013;59:474–81.

    Article  PubMed  Google Scholar 

  30. Angeli P, Gines P, Wong F, et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. J Hepatol. 2015;62:968–74.

    Article  PubMed  Google Scholar 

  31. Kellum JA, Sileanu FE, Murugan R, Lucko N, Shaw AD, Clermont G. Classifying AKI by urine output versus serum creatinine level. J Am Soc Nephrol. 2015;26:2231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Macedo E, Malhotra R, Bouchard J, Wynn SK, Mehta RL. Oliguria is an early predictor of higher mortality in critically ill patients. Kidney Int. 2011;80:760–7.

    Article  CAS  PubMed  Google Scholar 

  33. Macedo E, Malhotra R, Claure-Del Granado R, Fedullo P, Mehta RL. Defining urine output criterion for acute kidney injury in critically ill patients. Nephrol Dial Transplant. 2011;26:509–15.

    Article  PubMed  Google Scholar 

  34. Krag A, Bendtsen F, Henriksen JH, Moller S. Low cardiac output predicts development of hepatorenal syndrome and survival in patients with cirrhosis and ascites. Gut. 2010;59:105–10.

    Article  CAS  PubMed  Google Scholar 

  35. Moller S, Lee SS. Cirrhotic cardiomyopathy. J Hepatol. 2018;69:958–60.

    Article  PubMed  Google Scholar 

  36. Alobaidi R, Basu RK, Goldstein SL, Bagshaw SM. Sepsis-associated acute kidney injury. Semin Nephrol. 2015;35:2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Langenberg C, Wan L, Egi M, May CN, Bellomo R. Renal blood flow in experimental septic acute renal failure. Kidney Int. 2006;69:1996–2002.

    Article  CAS  PubMed  Google Scholar 

  38. Langenberg C, Wan L, Egi M, May CN, Bellomo R. Renal blood flow and function during recovery from experimental septic acute kidney injury. Intensive Care Med. 2007;33:1614–8.

    Article  PubMed  Google Scholar 

  39. Prowle JR, Bellomo R. Sepsis-associated acute kidney injury: macrohemodynamic and microhemodynamic alterations in the renal circulation. Semin Nephrol. 2015;35:64–74.

    Article  PubMed  Google Scholar 

  40. Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol. 2014;60:197–209.

    Article  PubMed  Google Scholar 

  41. Albillos A, de la Hera A, Gonzalez M, et al. Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement. Hepatology. 2003;37:208–17.

    Article  CAS  PubMed  Google Scholar 

  42. Thabut D, Massard J, Gangloff A, et al. Model for end-stage liver disease score and systemic inflammatory response are major prognostic factors in patients with cirrhosis and acute functional renal failure. Hepatology. 2007;46:1872–82.

    Article  PubMed  Google Scholar 

  43. Shah N, Dhar D, El Zahraa Mohammed F, et al. Prevention of acute kidney injury in a rodent model of cirrhosis following selective gut decontamination is associated with reduced renal TLR4 expression. J Hepatol. 2012;56:1047–53.

    Article  CAS  PubMed  Google Scholar 

  44. Shah N, Mohamed FE, Jover-Cobos M, et al. Increased renal expression and urinary excretion of TLR4 in acute kidney injury associated with cirrhosis. Liver Int. 2013;33:398–409.

    Article  CAS  PubMed  Google Scholar 

  45. Russ KB, Stevens TM, Singal AK. Acute kidney injury in patients with cirrhosis. J Clin Transl Hepatol. 2015;3:195–204.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Moreau R, Lebrec D. Diagnosis and treatment of acute renal failure in patients with cirrhosis. Best Pract Res Clin Gastroenterol. 2007;21:111–23.

    Article  PubMed  Google Scholar 

  47. Garcia-Tsao G, Parikh CR, Viola A. Acute kidney injury in cirrhosis. Hepatology. 2008;48:2064–77.

    Article  CAS  PubMed  Google Scholar 

  48. Allegretti AS, Parada XV, Eneanya ND, et al. Prognosis of patients with cirrhosis and AKI who initiate RRT. Clin J Am Soc Nephrol. 2018;13:16–25.

    Article  PubMed  Google Scholar 

  49. Brasen JH, Mederacke YS, Schmitz J, et al. Cholemic nephropathy causes acute kidney injury and is accompanied by loss of aquaporin 2 in collecting ducts. Hepatology. 2019;69:2107.

    Article  PubMed  CAS  Google Scholar 

  50. Bedford JJ, Leader JP, Walker RJ. Aquaporin expression in normal human kidney and in renal disease. J Am Soc Nephrol. 2003;14:2581–7.

    Article  CAS  PubMed  Google Scholar 

  51. Martin-Llahi M, Guevara M, Torre A, et al. Prognostic importance of the cause of renal failure in patients with cirrhosis. Gastroenterology. 2011;140:488–96; e4

    Article  PubMed  Google Scholar 

  52. Newell GC. Cirrhotic glomerulonephritis: incidence, morphology, clinical features, and pathogenesis. Am J Kidney Dis. 1987;9:183–90.

    Article  CAS  PubMed  Google Scholar 

  53. Pouria S, Feehally J. Glomerular IgA deposition in liver disease. Nephrol Dial Transplant. 1999;14:2279–82.

    Article  CAS  PubMed  Google Scholar 

  54. Amore A, Coppo R, Roccatello D, et al. Experimental IgA nephropathy secondary to hepatocellular injury induced by dietary deficiencies and heavy alcohol intake. Lab Investig. 1994;70:68–77.

    CAS  PubMed  Google Scholar 

  55. Saha MK, Julian BA, Novak J, Rizk DV. Secondary IgA nephropathy. Kidney Int. 2018;94:674–81.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Li P, Wei RB, Tang L, Wu J, Zhang XG, Chen XM. Clinical and pathological analysis of hepatitis B virus-related membranous nephropathy and idiopathic membranous nephropathy. Clin Nephrol. 2012;78:456–64.

    Article  PubMed  Google Scholar 

  57. Trawale JM, Paradis V, Rautou PE, et al. The spectrum of renal lesions in patients with cirrhosis: a clinicopathological study. Liver Int. 2010;30:725–32.

    Article  CAS  PubMed  Google Scholar 

  58. Chawla LS, Eggers PW, Star RA, Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med. 2014;371:58–66.

    Article  PubMed  CAS  Google Scholar 

  59. Khosla N, Soroko SB, Chertow GM, et al. Preexisting chronic kidney disease: a potential for improved outcomes from acute kidney injury. Clin J Am Soc Nephrol. 2009;4:1914–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Belcher JM, Garcia-Tsao G, Sanyal AJ, et al. Urinary biomarkers and progression of AKI in patients with cirrhosis. Clin J Am Soc Nephrol. 2014;9:1857–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bonventre JV. Maladaptive proximal tubule repair: cell cycle arrest. Nephron Clin Pract. 2014;127:61–4.

    Article  CAS  PubMed  Google Scholar 

  62. Ferenbach DA, Bonventre JV. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol. 2015;11:264–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. O’Leary JG, Levitsky J, Wong F, Nadim MK, Charlton M, Kim WR. Protecting the kidney in liver transplant candidates practice-based recommendations from the American Society of Transplantation Liver and Intestine Community of Practice. Am J Transplant. 2016;16:2516.

    Article  PubMed  Google Scholar 

  64. Fernandez J, Navasa M, Planas R, et al. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology. 2007;133:818–24.

    Article  CAS  PubMed  Google Scholar 

  65. European Association for the Study of the L. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J Hepatol. 2010;53:397–417.

    Article  Google Scholar 

  66. Wiest R, Krag A, Gerbes A. Spontaneous bacterial peritonitis: recent guidelines and beyond. Gut. 2012;61:297–310.

    Article  CAS  PubMed  Google Scholar 

  67. Salerno F, Navickis RJ, Wilkes MM. Albumin infusion improves outcomes of patients with spontaneous bacterial peritonitis: a meta-analysis of randomized trials. Clin Gastroenterol Hepatol. 2013;11:123–30.

    Article  CAS  PubMed  Google Scholar 

  68. Bendtsen F, Krag A, Moller S. Treatment of acute variceal bleeding. Dig Liver Dis. 2008;40:328–36.

    Article  CAS  PubMed  Google Scholar 

  69. Garcia-Tsao G, Sanyal AJ, Grace ND, Carey W, Practice Guidelines Committee of the American Association for the Study of Liver D, Practice Parameters Committee of the American College of G. Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis. Hepatology. 2007;46:922–38.

    Article  CAS  PubMed  Google Scholar 

  70. Fernandez J, Ruiz del Arbol L, Gomez C, et al. Norfloxacin vs ceftriaxone in the prophylaxis of infections in patients with advanced cirrhosis and hemorrhage. Gastroenterology. 2006;131:1049–56; quiz 285

    Article  CAS  PubMed  Google Scholar 

  71. Guevara M, Terra C, Nazar A, et al. Albumin for bacterial infections other than spontaneous bacterial peritonitis in cirrhosis. A randomized, controlled study. J Hepatol. 2012;57:759–65.

    Article  CAS  PubMed  Google Scholar 

  72. Thevenot T, Bureau C, Oberti F, et al. Effect of albumin in cirrhotic patients with infection other than spontaneous bacterial peritonitis. A randomized trial. J Hepatol. 2015;62:822–30.

    Article  CAS  PubMed  Google Scholar 

  73. Caraceni P, Riggio O, Angeli P, et al. Long-term albumin administration in decompensated cirrhosis (ANSWER): an open-label randomised trial. Lancet. 2018;391:2417–29.

    Article  CAS  PubMed  Google Scholar 

  74. Restuccia T, Ortega R, Guevara M, et al. Effects of treatment of hepatorenal syndrome before transplantation on posttransplantation outcome. A case-control study. J Hepatol. 2004;40:140–6.

    Article  PubMed  Google Scholar 

  75. Nguyen-Khac E, Thevenot T, Piquet MA, et al. Glucocorticoids plus N-acetylcysteine in severe alcoholic hepatitis. N Engl J Med. 2011;365:1781–9.

    Article  CAS  PubMed  Google Scholar 

  76. Serste T, Francoz C, Durand F, et al. Beta-blockers cause paracentesis-induced circulatory dysfunction in patients with cirrhosis and refractory ascites: a cross-over study. J Hepatol. 2011;55:794–9.

    Article  CAS  PubMed  Google Scholar 

  77. Serste T, Melot C, Francoz C, et al. Deleterious effects of beta-blockers on survival in patients with cirrhosis and refractory ascites. Hepatology. 2010;52:1017–22.

    Article  CAS  PubMed  Google Scholar 

  78. de Cleva R, Silva FP, Zilberstein B, Machado DJ. Acute renal failure due to abdominal compartment syndrome: report on four cases and literature review. Rev Hosp Clin Fac Med Sao Paulo. 2001;56:123–30.

    Article  PubMed  Google Scholar 

  79. Umgelter A, Reindl W, Franzen M, Lenhardt C, Huber W, Schmid RM. Renal resistive index and renal function before and after paracentesis in patients with hepatorenal syndrome and tense ascites. Intensive Care Med. 2009;35:152–6.

    Article  CAS  PubMed  Google Scholar 

  80. Umgelter A, Reindl W, Wagner KS, et al. Effects of plasma expansion with albumin and paracentesis on haemodynamics and kidney function in critically ill cirrhotic patients with tense ascites and hepatorenal syndrome: a prospective uncontrolled trial. Crit Care. 2008;12:R4.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wadei HM, Geiger XJ, Cortese C, et al. Kidney allocation to liver transplant candidates with renal failure of undetermined etiology: role of percutaneous renal biopsy. Am J Transplant. 2008;8:2618–26.

    Article  CAS  PubMed  Google Scholar 

  82. Francoz C, Nadim MK, Durand F. Kidney biomarkers in cirrhosis. J Hepatol. 2016;65:809.

    Article  CAS  PubMed  Google Scholar 

  83. Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14:2534–43.

    Article  CAS  PubMed  Google Scholar 

  84. Mishra J, Mori K, Ma Q, et al. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2004;15:3073–82.

    Article  PubMed  Google Scholar 

  85. Wheeler DS, Devarajan P, Ma Q, et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med. 2008;36:1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hirsch R, Dent C, Pfriem H, et al. NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr Nephrol. 2007;22:2089–95.

    Article  PubMed  Google Scholar 

  87. Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–8.

    Article  CAS  PubMed  Google Scholar 

  88. Wagener G, Jan M, Kim M, et al. Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology. 2006;105:485–91.

    Article  CAS  PubMed  Google Scholar 

  89. Makris K, Markou N, Evodia E, et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) as an early marker of acute kidney injury in critically ill multiple trauma patients. Clin Chem Lab Med. 2009;47:79–82.

    Article  CAS  PubMed  Google Scholar 

  90. Trachtman H, Christen E, Cnaan A, et al. Urinary neutrophil gelatinase-associated lipocalcin in D+HUS: a novel marker of renal injury. Pediatr Nephrol. 2006;21:989–94.

    Article  PubMed  Google Scholar 

  91. Nickolas TL, O’Rourke MJ, Yang J, et al. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med. 2008;148:810–9.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pianta TJ, Peake PW, Pickering JW, Kelleher M, Buckley NA, Endre ZH. Clusterin in kidney transplantation: novel biomarkers versus serum creatinine for early prediction of delayed graft function. Transplantation. 2015;99:171–9.

    Article  CAS  PubMed  Google Scholar 

  93. Lee EY, Kim MS, Park Y, Kim HS. Serum neutrophil gelatinase-associated lipocalin and interleukin-18 as predictive biomarkers for delayed graft function after kidney transplantation. J Clin Lab Anal. 2012;26:295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kohei J, Ishida H, Tanabe K, Tsuchiya K, Nitta K. Neutrophil gelatinase-associated lipocalin is a sensitive biomarker for the early diagnosis of acute rejection after living-donor kidney transplantation. Int Urol Nephrol. 2013;45:1159–67.

    Article  CAS  PubMed  Google Scholar 

  95. Ding H, He Y, Li K, et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) is an early biomarker for renal tubulointerstitial injury in IgA nephropathy. Clin Immunol. 2007;123:227–34.

    Article  CAS  PubMed  Google Scholar 

  96. Barreto R, Elia C, Sola E, et al. Urinary neutrophil gelatinase-associated lipocalin predicts kidney outcome and death in patients with cirrhosis and bacterial infections. J Hepatol. 2014;61:35–42.

    Article  CAS  PubMed  Google Scholar 

  97. Fagundes C, Pepin MN, Guevara M, et al. Urinary neutrophil gelatinase-associated lipocalin as biomarker in the differential diagnosis of impairment of kidney function in cirrhosis. J Hepatol. 2012;57:267–73.

    Article  CAS  PubMed  Google Scholar 

  98. Verna EC, Brown RS, Farrand E, et al. Urinary neutrophil gelatinase-associated lipocalin predicts mortality and identifies acute kidney injury in cirrhosis. Dig Dis Sci. 2012;57:2362–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ostermann M, Joannidis M. Biomarkers for AKI improve clinical practice: no. Intensive Care Med. 2015;41:618–22.

    Article  PubMed  Google Scholar 

  100. Martensson J, Bellomo R. The rise and fall of NGAL in acute kidney injury. Blood Purif. 2014;37:304–10.

    Article  CAS  PubMed  Google Scholar 

  101. Macdonald SP, Stone SF, Neil CL, et al. Sustained elevation of resistin, NGAL and IL-8 are associated with severe sepsis/septic shock in the emergency department. PLoS One. 2014;9:e110678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Otto GP, Busch M, Sossdorf M, Claus RA. Impact of sepsis-associated cytokine storm on plasma NGAL during acute kidney injury in a model of polymicrobial sepsis. Crit Care. 2013;17:419.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Huelin P, Sola E, Elia C, et al. Neutrophil gelatinase-associated lipocalin for assessment of acute kidney injury in cirrhosis. A prospective study. Hepatology. 2019;70(1):319–33.

    CAS  PubMed  Google Scholar 

  104. Ariza X, Sola E, Elia C, et al. Analysis of a urinary biomarker panel for clinical outcomes assessment in cirrhosis. PLoS One. 2015;10:e0128145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Liu Y, Guo W, Zhang J, et al. Urinary interleukin 18 for detection of acute kidney injury: a meta-analysis. Am J Kidney Dis. 2013;62:1058–67.

    Article  CAS  PubMed  Google Scholar 

  106. Wu H, Craft ML, Wang P, et al. IL-18 contributes to renal damage after ischemia-reperfusion. J Am Soc Nephrol. 2008;19:2331–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Siew ED, Ikizler TA, Gebretsadik T, et al. Elevated urinary IL-18 levels at the time of ICU admission predict adverse clinical outcomes. Clin J Am Soc Nephrol. 2010;5:1497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Belcher JM, Sanyal AJ, Peixoto AJ, et al. Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury. Hepatology. 2014;60:622–32.

    Article  CAS  PubMed  Google Scholar 

  109. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62:237–44.

    Article  CAS  PubMed  Google Scholar 

  110. Nishida M, Kawakatsu H, Okumura Y, Hamaoka K. Serum and urinary neutrophil gelatinase-associated lipocalin levels in children with chronic renal diseases. Pediatr Int. 2010;52:563–8.

    Article  CAS  PubMed  Google Scholar 

  111. Parikh CR, Devarajan P. New biomarkers of acute kidney injury. Crit Care Med. 2008;36:S159–65.

    Article  CAS  PubMed  Google Scholar 

  112. Qasem AA, Farag SE, Hamed E, Emara M, Bihery A, Pasha H. Urinary biomarkers of acute kidney injury in patients with liver cirrhosis. ISRN Nephrol. 2014;2014:376795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Lorenzen JM, Hafer C, Faulhaber-Walter R, et al. Osteopontin predicts survival in critically ill patients with acute kidney injury. Nephrol Dial Transplant. 2011;26:531–7.

    Article  CAS  PubMed  Google Scholar 

  114. Nejat M, Pickering JW, Walker RJ, et al. Urinary cystatin C is diagnostic of acute kidney injury and sepsis, and predicts mortality in the intensive care unit. Crit Care. 2010;14:R85.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Verstrepen WA, Persy VP, Verhulst A, Dauwe S, De Broe ME. Renal osteopontin protein and mRNA upregulation during acute nephrotoxicity in the rat. Nephrol Dial Transplant. 2001;16:712–24.

    Article  CAS  PubMed  Google Scholar 

  116. Levitsky J, Baker TB, Jie C, et al. Plasma protein biomarkers enhance the clinical prediction of kidney injury recovery in patients undergoing liver transplantation. Hepatology. 2014;60:2017–26.

    Article  CAS  PubMed  Google Scholar 

  117. Anders HJ, Banas B, Schlondorff D. Signaling danger: toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol. 2004;15:854–67.

    Article  CAS  PubMed  Google Scholar 

  118. Cavallin M, Piano S, Romano A, et al. Terlipressin given by continuous intravenous infusion versus intravenous boluses in the treatment of hepatorenal syndrome: a randomized controlled study. Hepatology. 2016;63:983–92.

    Article  CAS  PubMed  Google Scholar 

  119. Alessandria C, Ottobrelli A, Debernardi-Venon W, et al. Noradrenalin vs terlipressin in patients with hepatorenal syndrome: a prospective, randomized, unblinded, pilot study. J Hepatol. 2007;47:499–505.

    Article  CAS  PubMed  Google Scholar 

  120. Neri S, Pulvirenti D, Malaguarnera M, et al. Terlipressin and albumin in patients with cirrhosis and type I hepatorenal syndrome. Dig Dis Sci. 2008;53:830–5.

    Article  CAS  PubMed  Google Scholar 

  121. Sharma P, Kumar A, Shrama BC, Sarin SK. An open label, pilot, randomized controlled trial of noradrenaline versus terlipressin in the treatment of type 1 hepatorenal syndrome and predictors of response. Am J Gastroenterol. 2008;103:1689–97.

    Article  CAS  PubMed  Google Scholar 

  122. Sanyal AJ, Boyer T, Garcia-Tsao G, et al. A randomized, prospective, double-blind, placebo-controlled trial of terlipressin for type 1 hepatorenal syndrome. Gastroenterology. 2008;134:1360–8.

    Article  CAS  PubMed  Google Scholar 

  123. Martin-Llahi M, Pepin MN, Guevara M, et al. Terlipressin and albumin vs albumin in patients with cirrhosis and hepatorenal syndrome: a randomized study. Gastroenterology. 2008;134:1352–9.

    Article  CAS  PubMed  Google Scholar 

  124. Singh V, Ghosh S, Singh B, et al. Noradrenaline vs. terlipressin in the treatment of hepatorenal syndrome: a randomized study. J Hepatol. 2012;56:1293–8.

    Article  CAS  PubMed  Google Scholar 

  125. Boyer TD, Sanyal AJ, Wong F, et al. Terlipressin plus albumin is more effective than albumin alone in improving renal function in patients with cirrhosis and hepatorenal syndrome type 1. Gastroenterology. 2016;150:1579–89.. e2

    Article  CAS  PubMed  Google Scholar 

  126. Cavallin M, Kamath PS, Merli M, et al. Terlipressin plus albumin versus midodrine and octreotide plus albumin in the treatment of hepatorenal syndrome: a randomized trial. Hepatology. 2015;62:567–74.

    Article  CAS  PubMed  Google Scholar 

  127. Rodriguez E, Henrique Pereira G, Sola E, et al. Treatment of type 2 hepatorenal syndrome in patients awaiting transplantation: effects on kidney function and transplantation outcomes. Liver Transpl. 2015;21:1347–54.

    Article  PubMed  Google Scholar 

  128. Ghosh S, Choudhary NS, Sharma AK, et al. Noradrenaline vs terlipressin in the treatment of type 2 hepatorenal syndrome: a randomized pilot study. Liver Int. 2013;33:1187–93.

    Article  CAS  PubMed  Google Scholar 

  129. Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA. 2016;315:2190–9.

    Article  CAS  PubMed  Google Scholar 

  130. Gaudry S, Hajage D, Schortgen F, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med. 2016;375:122–33.

    Article  PubMed  Google Scholar 

  131. Contreras G, Garces G, Quartin AA, et al. An epidemiologic study of early renal replacement therapy after orthotopic liver transplantation. J Am Soc Nephrol. 2002;13:228–33.

    PubMed  Google Scholar 

  132. Ojo AO, Held PJ, Port FK, et al. Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med. 2003;349:931–40.

    Article  CAS  PubMed  Google Scholar 

  133. Leithead JA, Tariciotti L, Gunson B, et al. Donation after cardiac death liver transplant recipients have an increased frequency of acute kidney injury. Am J Transplant. 2012;12:965–75.

    Article  CAS  PubMed  Google Scholar 

  134. Aggarwal S, Kang Y, Freeman JA, Fortunato FL Jr, Pinsky MR. Postreperfusion syndrome: hypotension after reperfusion of the transplanted liver. J Crit Care. 1993;8:154–60.

    Article  CAS  PubMed  Google Scholar 

  135. Paugam-Burtz C, Kavafyan J, Merckx P, et al. Postreperfusion syndrome during liver transplantation for cirrhosis: outcome and predictors. Liver Transpl. 2009;15:522–9.

    Article  PubMed  Google Scholar 

  136. Durand F, Francoz C, Asrani SK, et al. Acute kidney injury after liver transplantation. Transplantation. 2018;102:1636–49.

    Article  PubMed  Google Scholar 

  137. Kong Y, Wang D, Shang Y, et al. Calcineurin-inhibitor minimization in liver transplant patients with calcineurin-inhibitor-related renal dysfunction: a meta-analysis. PLoS One. 2011;6:e24387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Asrani SK, Wiesner RH, Trotter JF, et al. De novo sirolimus and reduced-dose tacrolimus versus standard-dose tacrolimus after liver transplantation: the 2000–2003 phase II prospective randomized trial. Am J Transplant. 2014;14:356–66.

    Article  CAS  PubMed  Google Scholar 

  139. Teperman L, Moonka D, Sebastian A, et al. Calcineurin inhibitor-free mycophenolate mofetil/sirolimus maintenance in liver transplantation: the randomized spare-the-nephron trial. Liver Transpl. 2013;19:675–89.

    Article  PubMed  Google Scholar 

  140. Weir MR, Pearson TC, Patel A, et al. Long-term follow-up of kidney transplant recipients in the spare-the-nephron-trial. Transplantation. 2017;101:157–65.

    Article  PubMed  Google Scholar 

  141. Calmus Y, Kamar N, Gugenheim J, et al. Assessing renal function with daclizumab induction and delayed tacrolimus introduction in liver transplant recipients. Transplantation. 2010;89:1504–10.

    Article  CAS  PubMed  Google Scholar 

  142. Klintmalm GB, Feng S, Lake JR, et al. Belatacept-based immunosuppression in de novo liver transplant recipients: 1-year experience from a phase II randomized study. Am J Transplant. 2014;14:1817–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Neuberger JM, Mamelok RD, Neuhaus P, et al. Delayed introduction of reduced-dose tacrolimus, and renal function in liver transplantation: the ‘ReSpECT’ study. Am J Transplant. 2009;9:327–36.

    Article  CAS  PubMed  Google Scholar 

  144. Yoshida EM, Marotta PJ, Greig PD, et al. Evaluation of renal function in liver transplant recipients receiving daclizumab (Zenapax), mycophenolate mofetil, and a delayed, low-dose tacrolimus regimen vs. a standard-dose tacrolimus and mycophenolate mofetil regimen: a multicenter randomized clinical trial. Liver Transpl. 2005;11:1064–72.

    Article  PubMed  Google Scholar 

  145. Abdelmalek MF, Humar A, Stickel F, et al. Sirolimus conversion regimen versus continued calcineurin inhibitors in liver allograft recipients: a randomized trial. Am J Transplant. 2012;12:694–705.

    Article  CAS  PubMed  Google Scholar 

  146. Levitsky J, O'Leary JG, Asrani S, et al. Protecting the kidney in liver transplant recipients: practice-based recommendations from the American Society of Transplantation Liver and Intestine Community of Practice. Am J Transplant. 2016;16:2532–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Goralczyk AD, Bari N, Abu-Ajaj W, et al. Calcineurin inhibitor sparing with mycophenolate mofetil in liver transplantion: a systematic review of randomized controlled trials. Am J Transplant. 2012;12:2601–7.

    Article  CAS  PubMed  Google Scholar 

  148. Huang SS, Septimus E, Kleinman K, et al. Targeted versus universal decolonization to prevent ICU infection. N Engl J Med. 2013;368:2255–65.

    Article  CAS  PubMed  Google Scholar 

  149. Gonwa TA, McBride MA, Anderson K, Mai ML, Wadei H, Ahsan N. Continued influence of preoperative renal function on outcome of orthotopic liver transplant (OLTX) in the US: where will MELD lead US? Am J Transplant. 2006;6:2651–9.

    Article  CAS  PubMed  Google Scholar 

  150. Sharma P, Schaubel DE, Guidinger MK, Merion RM. Effect of pretransplant serum creatinine on the survival benefit of liver transplantation. Liver Transpl. 2009;15:1808–13.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Fong TL, Khemichian S, Shah T, Hutchinson IV, Cho YW. Combined liver-kidney transplantation is preferable to liver transplant alone for cirrhotic patients with renal failure. Transplantation. 2012;94:411–6.

    Article  CAS  PubMed  Google Scholar 

  152. Schmitt TM, Kumer SC, Al-Osaimi A, et al. Combined liver-kidney and liver transplantation in patients with renal failure outcomes in the MELD era. Transpl Int. 2009;22:876–83.

    Article  PubMed  Google Scholar 

  153. Locke JE, Warren DS, Singer AL, et al. Declining outcomes in simultaneous liver-kidney transplantation in the MELD era: ineffective usage of renal allografts. Transplantation. 2008;85:935–42.

    Article  PubMed  Google Scholar 

  154. Nadim MK, Sung RS, Davis CL, et al. Simultaneous liver-kidney transplantation summit: current state and future directions. Am J Transplant. 2012;12:2901–8.

    Article  CAS  PubMed  Google Scholar 

  155. Davis CL, Feng S, Sung R, et al. Simultaneous liver-kidney transplantation: evaluation to decision making. Am J Transplant. 2007;7:1702–9.

    Article  CAS  PubMed  Google Scholar 

  156. Eason JD, Gonwa TA, Davis CL, Sung RS, Gerber D, Bloom RD. Proceedings of consensus conference on simultaneous liver kidney transplantation (SLK). Am J Transplant. 2008;8:2243–51.

    Article  CAS  PubMed  Google Scholar 

  157. Nadim MK, Davis CL, Sung R, Kellum JA, Genyk YS. Simultaneous liver-kidney transplantation: a survey of US transplant centers. Am J Transplant. 2012;12:3119–27.

    Article  CAS  PubMed  Google Scholar 

  158. Chang Y, Gallon L, Shetty K, et al. Simulation modeling of the impact of proposed new simultaneous liver and kidney transplantation policies. Transplantation. 2015;99:424–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cassuto JR, Reese PP, Bloom RD, et al. Kidney transplantation in patients with a prior heart transplant. Transplantation. 2010;89:427–33.

    Article  PubMed  Google Scholar 

  160. Formica RN Jr. Simultaneous liver-kidney allocation: let’s not make perfect the enemy of good. Am J Transplant. 2016;16:2765.

    Article  PubMed  Google Scholar 

  161. Formica RN, Aeder M, Boyle G, et al. Simultaneous liver-kidney allocation policy: a proposal to optimize appropriate utilization of scarce resources. Am J Transplant. 2016;16:758–66.

    Article  CAS  PubMed  Google Scholar 

  162. Arora V, Maiwall R, Vijayaraghavan R, et al. Terlipressin is superior to noradrenaline in the management of acute kidney injury in acute on chronic liver failure. Hepatology. 2018; https://doi.org/10.1002/hep.30208.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitra K. Nadim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Francoz, C. et al. (2020). Renal Dysfunction in Patients with Cirrhosis. In: Rahimi, R. (eds) The Critically Ill Cirrhotic Patient. Springer, Cham. https://doi.org/10.1007/978-3-030-24490-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24490-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24489-7

  • Online ISBN: 978-3-030-24490-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics