Skip to main content

Contrast Enhanced MR imaging of Liver

  • Chapter
  • First Online:
Liver Diseases

Abstract

Contrast enhanced dynamic MRI is one of the best noninvasive imaging modalities in diagnosis of liver lesions. Recent progress of the MR scanner, software techniques and new contrast agents have increased the effectiveness and accuracy in detecting and characterizing liver disease, especially focal hepatic lesions.

Currently, the extracellular contrast agent Gd-DTPA and the combined agent Gd-EOB-DTPA are the most frequently used contrast media in clinical practice. The diagnosis of hepatocellular carcinoma could be established by the typical arterial enhancement and washout phenomenon in the venous/delayed phases. Furthermore, Gd-EOB-DTPA provides quantitative functional information, help in staging liver fibrosis and provide additional tumor information in hepatobiliary images. Therefore, the contrast enhanced MR is widely used in the diagnosis of diffuse liver disease and focal hepatic lesions. However, future studies are still needed to continuously improve the diagnostic accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee JM, Yoon JH, Joo I, Woo HS. Recent advances in CT and MR imaging for evaluation of hepatocellular carcinoma. Liver Cancer. 2012;1(1):22–40.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fahlenkamp UL, Wagner M, Nickel D, et al. Novel dynamic hepatic magnetic resonance imaging strategy using advanced parallel acquisition, rhythmic breath-hold technique, and gadoxetate disodium enhancement. Investig Radiol. 2016;51(1):33–40.

    Article  Google Scholar 

  3. Chen BB, Murakami T, Shih TT, et al. Novel imaging diagnosis for hepatocellular carcinoma: consensus from the 5th Asia-Pacific Primary Liver Cancer Expert Meeting (APPLE 2014). Liver Cancer. 2015;4(4):215–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ayuso C, Rimola J, Vilana R, et al. Diagnosis and staging of hepatocellular carcinoma (HCC): current guidelines. Eur J Radiol. 2018;101:72–81.

    Article  PubMed  Google Scholar 

  5. Wang YC, Chou CT, Lin CP, Chen YL, Chen YF, Chen RC. The value of Gd-EOB-DTPA-enhanced MR imaging in characterizing cirrhotic nodules with atypical enhancement on Gd-DTPA-enhanced MR images. PLoS One. 2017;12(3):e0174594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Brown JJ, vanSonnenberg E, Gerber KH, Strich G, Wittich GR, Slutsky RA. Magnetic resonance relaxation times of percutaneously obtained normal and abnormal body fluids. Radiology. 1985;154(3):727–31.

    Article  CAS  PubMed  Google Scholar 

  7. Kenney PJ, Sobol WT, Smith JK, Morgan DE. Computed model of gadolinium enhanced MRI of breast disease. Eur J Radiol. 1997;24(2):109–19.

    Article  CAS  PubMed  Google Scholar 

  8. Prince MR, Arnoldus C, Frisoli JK. Nephrotoxicity of high-dose gadolinium compared with iodinated contrast. J Magn Reson Imaging. 1996;6(1):162–6.

    Article  CAS  PubMed  Google Scholar 

  9. Sadowski EA, Bennett LK, Chan MR, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243(1):148–57.

    Article  PubMed  Google Scholar 

  10. Murata N, Murata K, Gonzalez-Cuyar LF, Maravilla KR. Gadolinium tissue deposition in brain and bone. Magn Reson Imaging. 2016;34(10):1359–65.

    Article  CAS  PubMed  Google Scholar 

  11. Prince MR, Zhang H, Zou Z, Staron RB, Brill PW. Incidence of immediate gadolinium contrast media reactions. AJR Am J Roentgenol. 2011;196(2):W138–43.

    Article  PubMed  Google Scholar 

  12. Neri E, Bali MA, Ba-Ssalamah A, et al. ESGAR consensus statement on liver MR imaging and clinical use of liver-specific contrast agents. Eur Radiol. 2016;26(4):921–31.

    Article  CAS  PubMed  Google Scholar 

  13. Semelka RC, Helmberger TK. Contrast agents for MR imaging of the liver. Radiology. 2001;218(1):27–38.

    Article  CAS  PubMed  Google Scholar 

  14. Gandhi SN, Brown MA, Wong JG, Aguirre DA, Sirlin CB. MR contrast agents for liver imaging: what, when, how. Radiographics. 2006;26(6):1621–36.

    Article  PubMed  Google Scholar 

  15. Wang YX. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35–40.

    PubMed  PubMed Central  Google Scholar 

  16. Sahani DV, O’Malley ME, Bhat S, Hahn PF, Saini S. Contrast-enhanced MRI of the liver with mangafodipir trisodium: imaging technique and results. J Comput Assist Tomogr. 2002;26(2):216–22.

    Article  PubMed  Google Scholar 

  17. Rofsky NM, Earls JP. Mangafodipir trisodium injection (Mn-DPDP). A contrast agent for abdominal MR imaging. Magn Reson Imaging Clin N Am. 1996;4(1):73–85.

    CAS  PubMed  Google Scholar 

  18. Hope MD, Hope TA, Zhu C, et al. Vascular imaging with ferumoxytol as a contrast agent. AJR Am J Roentgenol. 2015;205(3):W366–73.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zech CJ, Herrmann KA, Reiser MF, Schoenberg SO. MR imaging in patients with suspected liver metastases: value of liver-specific contrast agent Gd-EOB-DTPA. Magn Reson Med Sci. 2007;6(1):43–52.

    Article  PubMed  Google Scholar 

  20. Cruite I, Schroeder M, Merkle EM, Sirlin CB. Gadoxetate disodium-enhanced MRI of the liver: Part 2, Protocol optimization and lesion appearance in the cirrhotic liver. AJR Am J Roentgenol. 2010;195(1):29–41.

    Article  PubMed  Google Scholar 

  21. Hopkinson G, Lockwood P, Dolbear G. Evaluation of an equilibrium phase free-breathing dynamic contrast-enhanced MRI prototype sequence compared to traditional breath-held MRI acquisition in liver oncology patients. Radiography. 2018;24(3):211–8.

    Article  CAS  PubMed  Google Scholar 

  22. Materne R, Smith AM, Peeters F, et al. Assessment of hepatic perfusion parameters with dynamic MRI. Magn Reson Med. 2002;47(1):135–42.

    Article  CAS  PubMed  Google Scholar 

  23. Taouli B, Johnson RS, Hajdu CH, et al. Hepatocellular carcinoma: perfusion quantification with dynamic contrast-enhanced MRI. Am J Roentgenol. 2013;201(4):795–800.

    Article  Google Scholar 

  24. Haradome H, Grazioli L, Tsunoo M, et al. Can MR fluoroscopic triggering technique and slow rate injection provide appropriate arterial phase images with reducing artifacts on gadoxetic acid-DTPA (Gd-EOB-DTPA)-enhanced hepatic MR imaging? J Magn Reson Imaging. 2010;32:334–40.

    Article  PubMed  Google Scholar 

  25. Chandarana H, Feng L, Ream J, et al. Respiratory motion-resolved compressed sensing reconstruction of free-breathing radial acquisition for dynamic liver MRI. Investig Radiol. 2015;50(11):749–56.

    Article  Google Scholar 

  26. Thian YL, Riddell AM, Koh DM. Liver-specific agents for contrast-enhanced MRI: role in oncological imaging. Cancer Imaging. 2013;13(4):567–79.

    Article  PubMed  PubMed Central  Google Scholar 

  27. de Graaf W, Häusler S, Heger M, et al. Transporters involved in the hepatic uptake of (99m)Tc-mebrofenin and indocyanine green. J Hepatol. 2011;54(4):738–45.

    Article  PubMed  CAS  Google Scholar 

  28. Grazioli L, Federle MP, Brancatelli G, Ichikawa T, Olivetti L, Blachar A. Hepatic adenomas: imaging and pathologic findings. Radiographics. 2001;21(4):877–92.

    Article  CAS  PubMed  Google Scholar 

  29. Sica GT, Ji H, Ros PR. CT and MR imaging of hepatic metastases. AJR Am J Roentgenol. 2000;174(3):691–8.

    Article  CAS  PubMed  Google Scholar 

  30. Choi J-Y, Lee J-M, Sirlin CB. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: Part I. Development, growth, and spread: key pathologic and imaging aspects. Radiology. 2014;272(3):635–54.

    Article  PubMed  Google Scholar 

  31. Li R, Cai P, Ma KS, Ding SY, Guo DY, Yan XC. Dynamic enhancement patterns of intrahepatic cholangiocarcinoma in cirrhosis on contrast-enhanced computed tomography: risk of misdiagnosis as hepatocellular carcinoma. Sci Rep. 2016;6:26772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Self Study

Self Study

1.1 Questions

  1. 1.

    Which of the following are true for the Gd-DTPA enhanced MR images of liver lesions with typical presentations?

    1. (a)

      Hepatic hemangioma showed peripheral nodular enhancement in arterial phase and centripetal fill-in and persistent enhancement on delayed images.

    2. (b)

      HCC features arterial enhancement and washout phenomenon on venous and/or delayed phases.

    3. (c)

      FNH is hypovascular in arterial and portal venous phases.

    4. (d)

      ICC showed no enhancement in all the dynamic phases.

  2. 2.

    Which of the followings are true for the Gd-EOB-DTPA enhanced MR images of liver lesions?

    1. (a)

      Most HCCs are hyperintense on hepatobiliary phase.

    2. (b)

      The enhancement patterns in dynamic phases are similar to Gd-DTPA.

    3. (c)

      A typical FNH is hyperintense/isointense to adjacent liver parenchyma on hepatobiliary phase imaging with a hypointense central scar.

    4. (d)

      Metastatic tumors showed hyperintense to adjacent liver parenchyma on hepatobiliary phase imaging.

1.2 Answers to the Questions

  1. 1.

    Which of the following are true for the Gd-DTPA enhanced MR images of liver lesions with typical presentations?

    • (a), (b) Correct.

    • (c) FNH showed dense arterial enhancement, rapidly returned to isointensity in venous phase, and occasionally showed delayed enhancement of its central scar.

    • (d) Most ICC showed peripheral enhancement in arterial phase, progressive concentric filling, and contrast pooling on delayed images.

  2. 2.

    Which of the followings are true for the Gd-EOB-DTPA enhanced MR images of liver lesions?

    • (a) Most HCC showed hypointense on hepatobiliary phase.

    • (b), (c) Correct.

    • (d) Most metastatic tumors showed hypointensity on hepatobiliary phase.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, RC., Chou, CT., Wan, YL. (2020). Contrast Enhanced MR imaging of Liver. In: Radu-Ionita, F., Pyrsopoulos, N., Jinga, M., Tintoiu, I., Sun, Z., Bontas, E. (eds) Liver Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-24432-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24432-3_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24431-6

  • Online ISBN: 978-3-030-24432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics