Skip to main content

Patient-Specific 3D Printing in Liver Disease

  • Chapter
  • First Online:
Liver Diseases

Abstract

Three-dimensional (3D) printing has been increasingly used in medical applications with promising results reported in the literature. 3D printed physical models are shown to be advantageous than traditional visualisation tools in demonstrating complex anatomical structures and offering 3D relationship between normal anatomy and pathology. Evidence of using 3D printed liver models in clinical practice indicates the accuracy of 3D printed models in replicating anatomy and pathology, potential value of 3D printed models in pre-surgical planning, simulation and medical education. This chapter provides an overview of the clinical application of 3D printed models in liver disease. Limitations and future directions of 3D printing in liver disease are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farooqi KM, Sengupta PP. Echocardiography and three-dimensional printing: sound ideas to touch a heart. J Am Soc Echocardiogr. 2015;28:398–403.

    Article  PubMed  Google Scholar 

  2. Sumida T, Otawa N, Kamata YU, Kamakura S, Misushita T, Kitagaki H, Mori S, Sasaki K, Fujibayashi S, Takemoto M, Yamaguchi A, Sohmura T, Nakamura T, Mori Y. Custom-made titanium devices as membranes for bone augmentation in implant treatment: clinical application and the comparison with conventional titanium mesh. J Craniomaxillofac Surg. 2015;43:2183–8.

    Article  PubMed  Google Scholar 

  3. Aranda JL, Jimenez MF, Rodriguez M, Varela G. Tridimensional titanium-printed custom-made prosthesis for sternocostal reconstruction. Eur J Cardiothorac Surg. 2015;48:e92–4.

    Article  PubMed  Google Scholar 

  4. Kim GB, Lee S, Kim H, Yang DH, Kim YH, Kyung YS, Kim CS, Choi SH, Kim BJ, Ha H, Kwon SU, Kim N. Three-dimensional printing: basic principles and applications in medicine and radiology. Korean J Radiol. 2016;17:182–97.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Choi JY, Choi JH, Kim NK, Kim Y, Lee JK, Kim MK, Lee JH, Kim MJ. Analysis of errors in medical rapid prototyping models. Int J Oral Maxillofac Surg. 2002;31:23–32.

    Article  CAS  PubMed  Google Scholar 

  6. Chang PS, Parker TH, Patrick CW Jr, Miller MJ. The accuracy of stereolithography in planning craniofacial bone replacement. J Craniofac Surg. 2003;14:164–70.

    Article  PubMed  Google Scholar 

  7. Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging. 2017;10:171–84.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Giannopoulos AA, Steigner ML, George E, Barile M, Hunsaker AR, Rybicki FJ, Mitsouras D. Cardiothoracic applications of 3-dimensional printing. J Thorac Imaging. 2016;31:253–72.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Giannopoulos AA, Mitsouras D, Yoo SJ, Liu PP, Chatzizisis YS, Rybicki FJ. Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol. 2016;13:701–18.

    Article  CAS  PubMed  Google Scholar 

  10. Sun Z, Lee SY. A systematic review of 3-D printing in cardiovascular and cerebrovascular diseases. Anatol J Cardiol. 2017;17:423–35.

    PubMed  PubMed Central  Google Scholar 

  11. Sun Z, Squelch A. Patient-specific 3D printed models of aortic aneurysm and aortic dissection. J Med Imaging Health Inf. 2017;7:886–9.

    Article  Google Scholar 

  12. Ho D, Squelch A, Sun Z. Modelling of aortic aneurysm and aortic dissection through 3D printing. J Med Radiat Sci. 2017;64:10–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lau I, Sun Z. Three-dimensional printing in congenital heart disease: a systematic review. J Med Radiat Sci. 2018;65:226–36.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Preece D, Williams SB, Lam R, Weller R. ‘Let’s get physical’: advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy. Anat Sci Educ. 2013;6:216–24.

    Article  PubMed  Google Scholar 

  15. Waran V, Narayanan V, Karuppiah R, Pancharatnam D, Chandran H, Raman R, Rahman ZA, Owen SL, Aziz TZ. Injecting realism in surgical training - initial simulation experience with custom 3D models. J Surg Educ. 2014;71:193–7.

    Article  PubMed  Google Scholar 

  16. Zheng Y, Yu D, Zhao J, Wu Y, Zheng B. 3D printout models vs. 3D rendered images: which is better for preoperative planning? J Surg Educ. 2016;73:518–23.

    Article  PubMed  Google Scholar 

  17. Witowski JS, Pędziwiatr M, Major P, Budzyński A. Cost-effective, personalized, 3D-printed liver model for preoperative planning before laparoscopic liver hemihepatectomy for colorectal cancer metastases. Int J Comput Assist Radiol Surg. 2017;12:2047–54.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Madurska MJ, Poyade M, Eason D, Rea P, Watson AJM. Development of a patient-specific 3D-printed liver model for preoperative planning. Surg Innov. 2017;24:145–50.

    Article  PubMed  Google Scholar 

  19. Xiang N, Fang C, Fan Y, Yang J, Zeng N, Liu J, Zhu W. Application of liver three-dimensional printing in hepatectomy for complex massive hepatocarcinoma with rare variations of portal vein: preliminary experience. Int J Clin Exp Med. 2015;8:18873–8.

    PubMed  PubMed Central  Google Scholar 

  20. Alkhouri N, Zein NN. Three-dimensional printing and pediatric liver disease. Curr Opin Pediatr. 2016;28:626–30.

    Article  CAS  PubMed  Google Scholar 

  21. Oshiro Y, Ohkohchi N. Three-dimensional liver surgery simulation: computer-assisted surgical planning with three-dimensional simulation software and three-dimensional printing. Tissue Eng Part A. 2017;23:474–80.

    Article  PubMed  Google Scholar 

  22. Yao R, Xu G, Mao SS, Yang HY, Sang XT, Sun W, Mao YL. Three-dimensional printing: review of application in medicine and hepatic surgery. Cancer Biol Med. 2016;13:443–51.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fang CH, Tao HS, Yang J, Fang ZS, Cai W, Liu J, Fan YH. Impact of three-dimensional reconstruction technique in the operation planning of centrally located hepatocellular carcinoma. J Am Coll Surg. 2015;220:28–37.

    Article  PubMed  Google Scholar 

  24. Baimakhanov Z, Soyama A, Takatsuki M, Hidaka M, Hirayama T, Kinoshita A, Natsuda K, Kuroki T, Eguchi S. Preoperative simulation with a 3-dimensional printed solid model for one-stop reconstruction of multiple hepatic veins during living donor liver transplantation. Liver Transpl. 2015;21:266–8.

    Article  PubMed  Google Scholar 

  25. Bucking TM, Hill E, Robertson JL, Maneas E, Plumb AA, Nikitichev DI. From medical imaging data to 3D printed anatomical models. PLoS One. 2017;12:e0178540.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Choi YR, Kim JH, Park SJ, Hur BY, Han JK. Therapeutic response assessment using 3D ultrasound for hepatic metastasis from colorectal cancer: application of a personalized, 3D-printed tumor model using CT images. PLoS One. 2017;12:e0182596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Igami T, Nakamura Y, Hirose T, Ebata T, Yokoyama Y, Sugawara G, Mizuno T, Mori K, Nagino M. Application of a three-dimensional print of a liver in hepatectomy for small tumors invisible by intraoperative ultrasonography: preliminary experience. World J Surg. 2014;38:3163–6.

    Article  PubMed  Google Scholar 

  28. Javan R, Herrin D, Tangestanipoor A. Understanding spatially complex segmental and branch anatomy using 3D printing: liver, lung, prostate, coronary arteries, and circle of Willis. Acad Radiol. 2016;23:1183–9.

    Article  PubMed  Google Scholar 

  29. Javan R, Zeman M. A prototype educational model for hepatobiliary interventions: unveiling the role of graphic designers in medical 3D printing. J Digit Imaging. 2018;31:133–43.

    Article  PubMed  Google Scholar 

  30. Kong X, Nie L, Zhang H, Wang Z, Ye Q, Tang L, Li J, Huang W. Do three-dimensional visualization and three-dimensional printing improve hepatic segment anatomy teaching? A randomized controlled study. J Surg Educ. 2016;73:264–9.

    Article  PubMed  Google Scholar 

  31. Leng S, Chen B, Vrieze T, Kuhlman J, Yu L, Alexander A, Matsumoto J, Morris J, McCollough CH. Construction of realistic phantoms from patients images and a commercial three-dimensional printer. J Med Imag (Bellingham). 2016;3:033501.

    Article  Google Scholar 

  32. Oshiro Y, Mitani J, Okada T, Ohkohchi N. A novel three-dimensional print of liver vessels and tumors in hepatectomy. Surg Today. 2017;47:521–4.

    Article  PubMed  Google Scholar 

  33. Perica E, Sun Z. Patient-specific three-dimensional printing for pre-surgical planning in hepatocellular carcinoma treatment. Quant Imaging Med Surg. 2017;7:668–77.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Soejima Y, Taguchi T, Sugimoto M, Hayashida M, Yoshizumi T, Ikegami T, Uchiyama H, Shirabe K, Maehara Y. Three-dimensional printing and biotexture modeling for preoperative simulation in living donor liver transplantation for small infants. Liver Transpl. 2016;22:1610–4.

    Article  PubMed  Google Scholar 

  35. Souzaki R, Kinoshita Y, Ieiri S, Hayashida M, Koga Y, Shirabe K, Hara T, Maehara Y, Hashizume M, Taguchi T. Three-dimensional liver model based on preoperative CT images as a tool to assist in surgical planning for hepatoblastoma in a child. Pediatr Surg Int. 2015;31:593–6.

    Article  PubMed  Google Scholar 

  36. Soon DSC, Chae MP, Pilgrim CHC, Rozen WM, Spychal RT, Hunter-Smith DJ. 3D hepatic modelling for preoperative planning of hepatic resection: a systematic review. Ann Med Surg (Lond). 2016;10:1–7.

    Article  Google Scholar 

  37. Witowski JS, Coles-Black J, Zuzak TZ, Pedziwiatr M, Chuen J, Major P, Budzyriski A. 3D printing in liver surgery: a systematic review. Telemed J E Health. 2017;23:943–7.

    Article  PubMed  Google Scholar 

  38. Perica ER, Sun Z. A systematic review of three-dimensional printing in liver disease. J Digit Imaging. 2018; https://doi.org/10.1007/s10278-018-0067-x.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zein NN, Hanouneh IA, Bishop PD, Samaan M, Eghtesad B, Quintini C, Miller C, Yerian L, Klatte R. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transpl. 2013;19:1304–10.

    Article  PubMed  Google Scholar 

  40. Witowski J, Wake N, Grochowska A, Sun Z, Budzyriski A, Major P, Jan Popiela T, Pedziwiatr M. Investigating accuracy of 3D printed liver models with computed tomography. Quant Imaging Med Surg. 2019;9(1):43–52.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Takagi K, Nanashima A, Abo T, Arai J, Matsuo N, Fukuda T, Nagayasu T. Three-dimensional printing model of liver for operative simulation in perihilar cholangiocarcinoma. Hepatogastroenterology. 2014;61:2315–1216.

    PubMed  Google Scholar 

  42. Watson RA. A low-cost surgical application of additive fabrication. J Surg Educ. 2014;71:14–7.

    Article  PubMed  Google Scholar 

  43. Kong X, Nie L, Zhang H, Wang Z, Ye Q, Tang L, Huang W, Li J. Do 3D printing models improve anatomical teaching about hepatic segments to medical students? A randomized controlled study. World J Surg. 2016;40:1969–76.

    Article  PubMed  Google Scholar 

  44. Sun Z, Liu D. A systematic review of clinical value of three-dimensional printing in renal disease. Quant Imaging Med Surg. 2018;8:311–25.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang JZ, Xiong NY, Zhao LZ, Hu JT, Kong DC, Yuan JY. Review fantastic medical applications of 3D-printing in liver surgeries, liver regeneration, liver transplantation and drug hepatotoxicity testing: a review. Int J Surg. 2018;56:1–6.

    Article  PubMed  Google Scholar 

  46. Lewis PL, Green RM, Shah RN. 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression. Acta Biomater. 2018;69:63–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee JW, Choi YJ, Yong WJ, Pati F, Shim JH, Kang KS, Kang IH, Park J, Cho DW. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication. 2017;8:015007.

    Article  CAS  Google Scholar 

  48. Faulkner-Jones A, Fyfe AC, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication. 2015;7:044102.

    Article  PubMed  Google Scholar 

  49. Jeon H, Kang K, Park SA, Kim WD, Paik SS, Lee SH, Jeong J, Choi D. Generation of multilayered 3D structures of HepG2 cells using a bio-printing technique. Gut Liver. 2017;11:121–8.

    Article  PubMed  Google Scholar 

  50. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Sun .

Editor information

Editors and Affiliations

Self Study

Self Study

1.1 Questions

  1. 1.

    Which statement/s is/are true?

    1. (a)

      3D printed liver models can be produced using CT data

    2. (b)

      3D printed liver models can be produced using MRI data

    3. (c)

      3D printed liver models can be produced using Ultrasound data

    4. (d)

      3D printed liver models can be producing using angiographic data

  2. 2.

    Which statement/s is/are true?

    1. (a)

      3D printed liver models can be generated with high accuracy

    2. (b)

      3D printed models can be used for pre-surgical planning and simulation

    3. (c)

      3D printed models can be used for medical education

    4. (d)

      3D printed models can be used for assisting patient-doctor communication

    5. (e)

      All of them are correct

1.2 Answers

  1. 1.

    Which statement/s is/are true? a and b are correct.

    CT and MR imaging data are commonly used to generate 3D printed liver models.

    Ultrasound or angiographic imaging modalities do not provide volume data, thus are not used for 3D printing in liver disease.

  2. 2.

    Which statement/s is/are true? e is correct.

    Despite reported discrepancy in diameter measurements between original source images and 3D printed liver models, 3D printed liver models are shown to be accurate with applications in different areas ranging from pre-surgical planning and simulation to education.

Glossary

3D printing

A process to produce a solid 3D object from a 3D digital model using different materials enabling creation of customizable or patient-specific geometries or shapes.

Hepatocellular carcinoma

Most common type of primary malignant liver cancer.

Liver transplantation

Treatment option for a diseased liver by replacing it with a healthy liver from another person (donor).

Tumour

An abnormal mass of tissue growth resulting in swelling or enlargement of a part of the organ or body.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, Z. (2020). Patient-Specific 3D Printing in Liver Disease. In: Radu-Ionita, F., Pyrsopoulos, N., Jinga, M., Tintoiu, I., Sun, Z., Bontas, E. (eds) Liver Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-24432-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24432-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24431-6

  • Online ISBN: 978-3-030-24432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics