Skip to main content

Hepatocellular Death: Apoptosis, Autophagy, Necrosis and Necroptosis

  • Chapter
  • First Online:

Abstract

Without a doubt, hepatocellular death exists in all types of human liver disease such as viral, metabolic, autoimmune and toxic conditions. Presently, the recommendations of the Nomenclature Committee on Cell Death 2018 are grading cell death into three morphotypes apoptosis, autophagy and necrosis. Apoptosis and necrosis represent two major modes of hepatocyte death, and apoptosis assures tissue homeostasis by the physiologic removal of damaged hepatocytes. Signaling death pathways of liver might carry significant findings for a correct treatment of hepatic disorders. Lastly, upcoming studies should reveal knowledge regarding the liver regulation of hepatic signaling death pathways. A comprising overview of hepatocyte death is developed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AIF:

Apoptosis-inducing factor

ALD:

Alcoholic liver disease

AP-1:

Activator protein-1

AP-1:

The activation protein-1

APAF-1:

Apoptosis protease-activating factor-1

Atg:

Autophagy-related proteins

ATP:

Adenosine triphosphate

ATP:

Deoxyadenosine triphosphate

Bcl-2:

(B-cell lymphoma-2)

c-FLIP:

Cellular FLICE-like inhibitory protein

DAMPs:

Damage-associated molecular patterns

DISC:

The death-inducing signaling complex

FADD:

Fas-associated protein with a death domain

FasL:

Fas Ligand

HMGB1:

Protein (high-mobility group box-1) or HMG-1 (high—mobility group)1

Hsc70:

The chaperone heat shock cognate 70

IAP:

Inhibitors of apoptotic proteins

IKK complex:

I-kappa B kinase complex

JNK:

c-Jun N-terminal kinase

LAMP2A:

Lysosome-associated membrane protein 2A

LUBAC:

Linear ubiquitin chain assembly complex

MAPK:

Mitogen-activated protein kinase

MAPK:

Mitogen-activated protein kinases

MLKL:

Mixed-lineage kinase domain-like

MOMP:

Mitochondrial outer membrane permeabilization

MOMP:

Mitochondrial outer membrane permeabilization

mTOR kinase:

The mammalian target of rapamycin kinase

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

NF-KB:

Transcription factor nuclear factor

PCD:

Programmed cell death

PI3K:

Class III phosphatidyl inositol-3 kinase

PRRs:

The pathogen recognition receptors

PS:

Phosphatidylserine

RIPK:

Receptor interacting protein kinase or receptor interacting serine-threonine kinase

RIPs:

Receptor interacting proteins

ROS:

Reactive oxygen species

Smac:

Second activator of mitochondrial apoptosis

TFEB:

Transcription factor EB

TGF-β1:

Transforming growth factor

TNF:

Tumor necrosis factor

TNFR1:

TNF receptor type 1

TNFR2:

TNF receptor type

TNF-α:

Tumor necrosis factor

TRADD:

TNF receptor associated death domain protein

TRAF2:

TNF receptor-associated factor 2

TRAIL:

TNF related apoptosis-inducing ligand

TRAIL:

TNF-released apoptosis-inducing ligand

TRAIL-R:

TNF-related apoptosis-inducing ligand receptor

UTP:

Uridine triphosphate

References

  1. Vinken M, Maes M, Oliveira AG, Cogliati B, Marques PE, Menezes GB, Dagli ML, Vanhaecke T, Rogiers V. Primary hepatocytes and their cultures in liver apoptosis research. Arch Toxicol. 2014;88(2):199–212. https://doi.org/10.1007/s00204-013-1123-4.

    Article  CAS  PubMed  Google Scholar 

  2. Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology. 2014;147(4):765–783.e4. https://doi.org/10.1053/j.gastro.2014.07.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Galluzzi L, Vitale I, Aaronson SA. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol. 2004;16:663–9.

    Article  CAS  Google Scholar 

  5. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013;1833(12):3448–59. https://doi.org/10.1016/j.bbamcr.2013.06.001.

    Article  CAS  PubMed  Google Scholar 

  6. Wang K. Autophagy and apoptosis in liver injury. Cell Cycle. 2015;14(11):1631–42. https://doi.org/10.1080/15384101.2015.1038685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eguchi A, Wree A, Feldstein AE. Biomarkers of liver cell death. J Hepatol. 2014;60(5):1063–74. https://doi.org/10.1016/j.jhep.2013.12.026.

    Article  CAS  PubMed  Google Scholar 

  8. Davies SP, Reynolds GM, Stamataki Z. Clearance of apoptotic cells by tissue epithelia: a putative role for hepatocytes in liver efferocytosis. Front Immunol. 2018;9:44. https://doi.org/10.3389/fimmu.2018.00044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saeed WK, Jun DW. Necroptosis: an emerging type of cell death in liver diseases. World J Gastroenterol. 2014;20(35):12526–32. https://doi.org/10.3748/wjg.v20.i35.12526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Radu-Ionita F, Bontas E, Goleanu V, Circiumaru B, Bartos D, Parepa I, Tintoiu IC, Popa A. Heart embryology—overview. In: Dumitrescu S, Tintoiu IC, Underwood MJ, editors. Right heart pathology from mechanism to management. New York: Springer; 2018. p. 3–24. isbn:978-3-319-73763-8.

    Chapter  Google Scholar 

  11. Kloesel B, DiNardo JA, Body SC. Cardiac embryology and molecular mechanisms of congenital heart disease: a primer for anesthesiologists. Anesth Analg. 2016;123:551–69. https://doi.org/10.1213/ANE.00000000000014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guicciardi ME, Malhi H, Mott JL, Gores GJ. Apoptosis and necrosis in the liver. Compr Physiol. 2013 Apr;3(2):977–1010. https://doi.org/10.1002/cphy.c120020.

    Article  PubMed  Google Scholar 

  13. Cao L, et al. Mechanism of hepatocyte apoptosis. J Cell Death. 2016;9:19–29. https://doi.org/10.4137/JCD.S39824.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dara L, Liu ZX, Kaplowitz N. A murder mystery in the liver: who done it and how? J Clin Invest. 2016;126(11):4068–71. https://doi.org/10.1172/JCI90830.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Elmore SA, Dixon D, Hailey JR, Harada T, Herbert RA, Maronpot RR, Nolte T, Rehg JE, Rittinghausen S, Rosol TJ, Satoh H, Vidal JD, Willard-Mack CL, Creasy DM. Recommendations from the INHAND apoptosis/necrosis working group. Toxicol Pathol. 2016;44(2):173–88. https://doi.org/10.1177/0192623315625859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Malhi H, Guicciardi ME, Gores GJ. Hepatocyte death: a clear and present danger. Physiol Rev. 2010;90(3):1165–94. https://doi.org/10.1152/physrev.00061.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ku NO, Strnad P, Bantel H, Omary MB. Keratins: biomarkers and modulators of apoptotic and necrotic cell death in the liver. Hepatology. 2016;64(3):966–76. https://doi.org/10.1002/hep.28493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schattenberg JM, Galle PR, Schuchmann M. Apoptosis in liver disease. Liver Int. 2006;26(8):904–11.

    Article  CAS  Google Scholar 

  19. Guo W, Yan L, Yang L, Liu X, E Q, Gao P, Ye X, Liu W, Zuo J. Targeting GRP75 improves HSP90 inhibitor efficacy by enhancing p53-mediated apoptosis in hepatocellular carcinoma. PLoS One. 2014;9(1): e85766. https://doi.org/10.1371/journal.pone.0085766.

    Article  Google Scholar 

  20. Batts KP, Ludwig J. Chronic hepatitis. An update on terminology and reporting. Am Surg Pathol. 1995;19:1409–17.

    Article  CAS  Google Scholar 

  21. Bantel H, Lügering A, Heidemann J, Volkmann X, Poremba C, Strassburg CP, Manns MP, Schulze-Osthoff K. Detection of apoptotic caspase activation in sera from patients with chronic HCV infection is associated with fibrotic liver injury. Hepatology. 2004;40(5):1078–87.

    Article  CAS  Google Scholar 

  22. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12. https://doi.org/10.1002/path.2697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Madrigal-Matute J, Cuervo AM. Regulation of liver metabolism by autophagy. Gastroenterology. 2016;150(2):328–39. https://doi.org/10.1053/j.gastro.2015.09.042.

    Article  CAS  PubMed  Google Scholar 

  24. Rautou PE, Mansouri A, Lebrec D, Durand F, Valla D, Moreau R. Autophagy in liver diseases. J Hepatol. 2010;53(6):1123–34. https://doi.org/10.1016/j.jhep.2010.07.006.

    Article  CAS  PubMed  Google Scholar 

  25. Krishna M. Patterns of necrosis in liver disease. Clin Liver Dis. 2017;10:53–6. https://doi.org/10.1002/cld.653.

    Article  Google Scholar 

  26. Linkermann A, Green DR. Necroptosis. N Engl J Med. 2014;370:455–65.

    Article  CAS  Google Scholar 

  27. Dara L, Liu Z-X, Kaplowitz N. Questions and controversies: the role of necroptosis in liver disease. Cell Death Discov. 2016;2:16089. https://doi.org/10.1038/cddiscovery.2016.89.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Self Study

Self Study

1.1 Questions

  1. 1.

    Which statement is true?

    1. (a)

      Cell death is grading into four morphotypes apoptosis, autophagy, necrosis and necroptosis.

    2. (b)

      Apoptosis is morphologically defined by a smaller spheric cell with plasma membrane blebbing.

    3. (c)

      Extrinsic apoptosis as a form of incidental cell death.

    4. (d)

      p53 is blocked by damaged DNA.

  2. 2.

    Which statement/statements is/are true?

    1. (a)

      Mitochondrial dysfunction is a feature for both apoptosis and necrosis.

    2. (b)

      Apoptosis is a feature of cholestasis, alcoholic hepatitis, non-alcoholic steatohepatitis, autoimmune hepatitis, viral hepatitis, fulminate hepatic failure, ischemia-reperfusion injury, fibrosis and cirrhosis.

    3. (c)

      DAMPs have low release in apoptosis, necrosis and necroptosis.

    4. (d)

      Extracellular cytochrome c activates apoptosome formation.

1.2 Answers

  1. 1.

    Which statement is true?

    1. (a)

      Cell death is grading into three morphotypes apoptosis, autophagy and necrosis.

    2. (b)

      Hepatocyte apoptosis is morphologically defined by a smaller spheric cell, reduction of cell or ‘’cell shrinkage”, plasma membrane blebbing, chromatin condensation (pyknosis or small pyknotic nucleus), nuclear fragmentation (karyorrhexis), DNA splitting, mitochondrial permeabilization, cytoplasmic condensation (hypereosinophilic cytoplasm), followed by cell fragmentation into apoptotic bodies that are removed within lysosomes. Note: chromatin condensation is a hallmark of apoptosis CORRECT.

    3. (c)

      Extrinsic apoptosis as a form of regulated cell death induced or triggered by perturbations of the extracellular microenvironment that are detected by plasma membrane receptors, propagated by caspase-8 (with the optional involvement of MOMP), and precipitated by executioner caspases, mainly caspase-3.

    4. (d)

      p53 named the ‘’guardian of genome” is another intracellular regulator that decides if damaged DNA from undergoing apoptosis may be removed or repaired. As such, p53 is triggered by damaged DNA, ischemia, oxidative stress, hypoxia and heat shock.

  2. 2.

    Which statement/statements is/are true?

    1. (a)

      Mitochondrial dysfunction is a significant feature for both apoptosis and necrosis but with different molecular mechanisms. CORRECT.

    2. (b)

      There is an increased apoptosis in cholestasis, alcoholic hepatitis, non-alcoholic steatohepatitis, autoimmune hepatitis, viral hepatitis, fulminate hepatic failure, ischemia-reperfusion injury, fibrosis and cirrhosis. In case of hepatitis, apoptosis is the major cell death, being a cytoprotective mechanism in the liver clearance from infections. CORRECT.

    3. (c)

      The reduced inflammatory response of apoptosis is caused by decreased discharge of DAMPs (Damage-associated molecular patterns) and rapid exclusion of apoptotic bodies. However, the mainly discharge of DAMPs appears in necrosis and necroptosis.

    4. (d)

      Mitochondrial cytochrome c activates apoptosome formation that is a complex containing cytochrome c, APAF-1 (apoptosis protease-activating factor-1), ATP and procaspases-9. Caspase 9 activates further caspase 3.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radu-Ionita, F., Bontas, E., Tintoiu, I.C. (2020). Hepatocellular Death: Apoptosis, Autophagy, Necrosis and Necroptosis. In: Radu-Ionita, F., Pyrsopoulos, N., Jinga, M., Tintoiu, I., Sun, Z., Bontas, E. (eds) Liver Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-24432-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24432-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24431-6

  • Online ISBN: 978-3-030-24432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics