Skip to main content

The Paucity of Interlobular Bile Ducts

  • Chapter
  • First Online:
Liver Diseases

Abstract

The remodeling of interlobular bile ducts is a fascinating interplay in the perinatal liver. There are excretory structures that need to be built to drain bile from the hepatocytes. These structures are vital for the wellbeing of the organism and are built during the ontogenesis of the liver, which plays a major role in life. The bile flows from the bile canaliculus of two adjacent hepatocytes through the Hering’s canals into the interlobular bile ducts, which are in the portal triads between the hepatic lobules. The interlobular bile ducts will transfer the bile to segmental bile ducts and major bile ducts, which converge into the right and left major bile ducts. Finally, the bile reaches the common bile duct and ductus choledochus following joining with the cystic duct of the gallbladder. The ductus choledochus discharges at the duodenal papilla. The proper remodeling of the primitive (embryonic) ductal plate of the liver is at the basis of the formation of the interlobular bile ducts, which are positioned about three diameters from the portal artery and lined by healthy cholangiocytes. A paucity of the interlobular bile ducts (PIBD) is defined as an interlobular bile duct to portal tract (IBD/PT) ratio of 0.5 or less in a needle liver biopsy. In this chapter, the paucity of interlobular bile ducts is reviewed into three paragraphs, including the cholangiocyte structure, the ductal plate remodeling of the liver, and the clinical and genetic syndromes associated with the lack or scarcity of the IBDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberts SK, Ludwig J, Larusso NF. The pathobiology of biliary epithelia. Gastroenterology. 1997;112(1):269–79.

    Article  CAS  PubMed  Google Scholar 

  2. Bongiovanni AM. Bile acid content of gallbladder of infants, children and adults. J Clin Endocrinol Metab. 1965;25:678–85.

    Article  CAS  PubMed  Google Scholar 

  3. deBelle RC, Blacklow NR, Baylan M, Little JM, Lester R. Bile acid conjugation in fetal hepatic organ cultures. Am J Phys. 1976;231(4):1124–8.

    Article  CAS  Google Scholar 

  4. Danielsson H, Rutter WJ. The metabolism of bile acids in the developing rat liver. Biochemistry. 1968;7(1):346–52.

    Article  CAS  PubMed  Google Scholar 

  5. Sergi C, Benstz J, Feist D, Nutzenadel W, Otto HF, Hofmann WJ. Bile duct to portal space ratio and ductal plate remnants in liver disease of infants aged less than 1 year. Pathology. 2008;40(3):260–7.

    Article  PubMed  Google Scholar 

  6. Sergi C, Adam S, Kahl P, Otto HF. Study of the malformation of ductal plate of the liver in Meckel syndrome and review of other syndromes presenting with this anomaly. Pediatr Dev Pathol. 2000;3(6):568–83.

    Article  CAS  PubMed  Google Scholar 

  7. Sergi C, Adam S, Kahl P, Otto HF. The remodeling of the primitive human biliary system. Early Hum Dev. 2000;58(3):167–78.

    Article  CAS  PubMed  Google Scholar 

  8. Sergi C, Kahl P, Otto HF. Contribution of apoptosis and apoptosis-related proteins to the malformation of the primitive intrahepatic biliary system in Meckel syndrome. Am J Pathol. 2000;156(5):1589–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hammar JA. Uber die erste Entstehung der nicht kapillaren intrahepatischen Gallengange beim Menschen. Z Mikrosk Anat Forsch. 1926;5:59–89.

    Google Scholar 

  10. Desmet VJ. Embryology of the liver and intrahepatic biliary tract, and an overview of malformations of the bile duct. In: Bircher J, Benhamou JP, McIntyre N, Rizzetto M, Rhodes J, editors. The Oxford textbook of clinical hepatology. 2nd ed. Oxford: Oxford University Press; 1999. p. 51–61.

    Google Scholar 

  11. Roskams T, Desmet V. Embryology of extra- and intrahepatic bile ducts, the ductal plate. Anat Rec (Hoboken). 2008;291(6):628–35.

    Article  CAS  Google Scholar 

  12. Desmet VJ, van Eyken P, Roskams T. Histopathology of vanishing bile duct diseases. Adv Clin Pathol. 1998;2(2):87–99.

    CAS  Google Scholar 

  13. Desmet VJ. The amazing universe of hepatic microstructure. Hepatology. 2009;50(2):333–44.

    Article  PubMed  Google Scholar 

  14. Desmet VJ. Congenital diseases of intrahepatic bile ducts: variations on the theme “ductal plate malformation”. Hepatology. 1992;16(4):1069–83.

    Article  CAS  PubMed  Google Scholar 

  15. Hamilton PW, Allen DC. Morphometry in histopathology. J Pathol. 1995;175(4):369–79.

    Article  CAS  PubMed  Google Scholar 

  16. Amella C, Cappello F, Kahl P, Fritsch H, Lozanoff S, Sergi C. Spatial and temporal dynamics of innervation during the development of fetal human pancreas. Neuroscience. 2008;154(4):1477–87.

    Article  CAS  PubMed  Google Scholar 

  17. Snover DC. Biopsy diagnosis of liver disease. Netherlands: Wolters Kluwer; 1991, 300p.

    Google Scholar 

  18. Dorn L, Menezes LF, Mikuz G, Otto HF, Onuchic LF, Sergi C. Immunohistochemical detection of polyductin and co-localization with liver progenitor cell markers during normal and abnormal development of the intrahepatic biliary system and in adult hepatobiliary carcinomas. J Cell Mol Med. 2009;13(7):1279–90.

    Article  CAS  PubMed  Google Scholar 

  19. Johnson CA, Gissen P, Sergi C. Molecular pathology and genetics of congenital hepatorenal fibrocystic syndromes. J Med Genet. 2003;40(5):311–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hadchouel M. Paucity of interlobular bile ducts. Semin Diagn Pathol. 1992;9(1):24–30.

    CAS  PubMed  Google Scholar 

  21. Hadchouel M, Hugon RN, Gautier M. Reduced ratio of portal tracts to paucity of intrahepatic bile ducts. Arch Pathol Lab Med. 1978;102(8):402.

    CAS  PubMed  Google Scholar 

  22. MacMahon HE, Thannhauser SJ. Congenital dysplasia of the interlobular bile ducts with extensive skin xanthomata; congenital acholangic biliary cirrhosis. Gastroenterology. 1952;21(4):488–506.

    Article  CAS  PubMed  Google Scholar 

  23. Witzleben CL. Bile duct paucity (“intrahepatic atresia”). Perspect Pediatr Pathol. 1982;7:185–201.

    CAS  PubMed  Google Scholar 

  24. Kahn E. Paucity of interlobular bile ducts. Arteriohepatic dysplasia and nonsyndromic duct paucity. Perspect Pediatr Pathol. 1991;14:168–215.

    CAS  PubMed  Google Scholar 

  25. Alagille D. Intrahepatic biliary atresia (hepatic ductular hypoplasia). In: Berenberg SR, editor. Liver diseases in infancy and childhood. Dordrecht: Martinus Nijhoff; 1976. p. 129–42.

    Chapter  Google Scholar 

  26. Kahn E, Markowitz J, Aiges H, Daum F. Human ontogeny of the bile duct to portal space ratio. Hepatology. 1989;10(1):21–3.

    Article  CAS  PubMed  Google Scholar 

  27. Vogel M. Atlas der morphologischen Plazentadiagnostik. Berlin: Springer; 1996, 263p.

    Book  Google Scholar 

  28. Costa AM, Pegado CS, Porto LC. Quantification of the intrahepatic biliary tree during human fetal development. Anat Rec. 1998;251(3):297–302.

    Article  CAS  PubMed  Google Scholar 

  29. Fabbretti G, Sergi C, Consalez G, Faa G, Brisigotti M, Romeo G, et al. Genetic variants of alpha-1-antitrypsin (AAT). Liver. 1992;12(4 Pt 2):296–301.

    CAS  PubMed  Google Scholar 

  30. Sergi C, Bahitham W, Al-Bahrani R. Bile duct paucity in infancy. In: Mizuguchi Y, editor. Liver biopsy in modern medicine. London, UK: IntechOpen; 2011. p. 205–304.

    Google Scholar 

  31. Fargion S, Bissoli F, Fracanzani AL, Suigo E, Sergi C, Taioli E, et al. No association between genetic hemochromatosis and alpha1-antitrypsin deficiency. Hepatology. 1996;24(5):1161–4.

    CAS  PubMed  Google Scholar 

  32. Fargion S, Sergi C, Bissoli F, Fracanzani AL, Suigo E, Carazzone A, et al. Lack of association between porphyria cutanea tarda and alpha 1-antitrypsin deficiency. Eur J Gastroenterol Hepatol. 1996;8(4):387–91.

    Article  CAS  PubMed  Google Scholar 

  33. Sergi C, Consalez GG, Fabbretti G, Brisigotti M, Faa G, Costa V, et al. Immunohistochemical and genetic characterization of the M Cagliari alpha-1-antitrypsin molecule (M-like alpha-1-antitrypsin deficiency). Lab Investig. 1994;70(1):130–3.

    CAS  PubMed  Google Scholar 

  34. Warren M, Mierau G, Wartchow EP, Shimada H, Yano S. Histologic and ultrastructural features in early and advanced phases of Zellweger spectrum disorder (infantile Refsum disease). Ultrastruct Pathol. 2018;42(3):220–7.

    Article  PubMed  Google Scholar 

  35. Depreter M, Espeel M, Roels F. Human peroxisomal disorders. Microsc Res Tech. 2003;61(2):203–23.

    Article  CAS  PubMed  Google Scholar 

  36. Espeel M, Roels F, Giros M, Mandel H, Peltier A, Poggi F, et al. Immunolocalization of a 43 kDa peroxisomal membrane protein in the liver of patients with generalized peroxisomal disorders. Eur J Cell Biol. 1995;67(4):319–27.

    CAS  PubMed  Google Scholar 

  37. Khan A, Sergi C. Sialidosis: a review of morphology and molecular biology of a rare pediatric disorder. Diagnostics (Basel). 2018;8(2) https://doi.org/10.3390/diagnostics8020029.

    Article  PubMed Central  CAS  Google Scholar 

  38. Sergi C, Penzel R, Uhl J, Zoubaa S, Dietrich H, Decker N, et al. Prenatal diagnosis and fetal pathology in a Turkish family harboring a novel nonsense mutation in the lysosomal alpha-N-acetyl-neuraminidase (sialidase) gene. Hum Genet. 2001;109(4):421–8.

    Article  CAS  PubMed  Google Scholar 

  39. Sergi C, Beedgen B, Kopitz J, Zilow E, Zoubaa S, Otto HF, et al. Refractory congenital ascites as a manifestation of neonatal sialidosis: clinical, biochemical and morphological studies in a newborn Syrian male infant. Am J Perinatol. 1999;16(3):133–41.

    Article  CAS  PubMed  Google Scholar 

  40. Sergi C. Transmission electron microscopy of pediatric small round blue cell tumors. In: Méndez-Vilas A, editor. Microscopy science: last approaches on educational programs and applied research. Spain: Formatex Research Center; 2018.

    Google Scholar 

  41. Crosnier C, Lykavieris P, Meunier-Rotival M, Hadchouel M. Alagille syndrome. The widening spectrum of arteriohepatic dysplasia. Clin Liver Dis. 2000;4(4):765–78.

    Article  CAS  PubMed  Google Scholar 

  42. Duque Lasio ML, Kozel BA. Elastin-driven genetic diseases. Matrix Biol. 2018;71–72:144–60.

    Article  PubMed  CAS  Google Scholar 

  43. Sakhuja P, Whyte H, Kamath B, Martin N, Chitayat D. Williams syndrome presenting with findings consistent with Alagille syndrome. Clin Case Rep. 2015;3(1):24–8.

    Article  PubMed  Google Scholar 

  44. Snover DC. Problems in the interpretation of liver biopsies after liver transplantation. Am J Surg Pathol. 1989;13(Suppl 1):31–8.

    PubMed  Google Scholar 

  45. Demetris AJ, Jaffe R, Starzl TE. A review of adult and pediatric post-transplant liver pathology. Pathol Annu. 1987;22(Pt 2):347–86.

    PubMed  Google Scholar 

  46. Watson GH, Miller V. Arteriohepatic dysplasia: familial pulmonary arterial stenosis with neonatal liver disease. Arch Dis Child. 1973;48(6):459–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alagille D, Odievre M, Gautier M, Dommergues JP. Hepatic ductular hypoplasia associated with characteristic facies, vertebral malformations, retarded physical, mental, and sexual development, and cardiac murmur. J Pediatr. 1975;86(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  48. Meunier-Rotival M, Hadchouel M. Alagille syndrome (AGS). Atlas Genet Cytogenet Oncol Haematol [Internet]. 21 Oct 2005, 2007. Available from: http://AtlasGeneticsOncology.org/Kprones/AlagilleID10090.html.

  49. Ripka S, Gress TM. CLDN4 (claudin-4). Atlas Genet Cytogenet Oncol Haematol [Internet]. 12 Oct 2006, 2018; 10(2):77–8. Available from: http://AtlasGeneticsOncology.org/Genes/CLDN4ID42975ch7q11.html.

  50. O’Reilly K, Ahmed SF, Murday V, McGrogan P. Biliary hypoplasia in Williams syndrome. Arch Dis Child. 2006;91(5):420–1.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Copelovitch L, O’Brien MM, Guttenberg M, Otto EA, Kaplan BS. Renal-hepatic-pancreatic dysplasia: a sibship with skeletal and central nervous system anomalies and NPHP3 mutation. Am J Med Genet A. 2013;161A(7):1743–9.

    Article  PubMed  CAS  Google Scholar 

  52. Villeneuve J, Pelluard-Nehme F, Combe C, Carles D, Chaponnier C, Ripoche J, et al. Immunohistochemical study of the phenotypic change of the mesenchymal cells during portal tract maturation in normal and fibrous (ductal plate malformation) fetal liver. Comp Hepatol. 2009;8:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Awasthi A, Das A, Srinivasan R, Joshi K. Morphological and immunohistochemical analysis of ductal plate malformation: correlation with fetal liver. Histopathology. 2004;45(3):260–7.

    Article  CAS  PubMed  Google Scholar 

  54. Devriendt K, Dooms L, Proesmans W, de Zegher F, Desmet V, Eggermont E. Paucity of intrahepatic bile ducts, solitary kidney and atrophic pancreas with diabetes mellitus: atypical Alagille syndrome? Eur J Pediatr. 1996;155(2):87–90.

    Article  CAS  PubMed  Google Scholar 

  55. Bernstein J, Chandra M, Creswell J, Kahn E, Malouf NN, McVicar M, et al. Renal-hepatic-pancreatic dysplasia: a syndrome reconsidered. Am J Med Genet. 1987;26(2):391–403.

    Article  CAS  PubMed  Google Scholar 

  56. Steinberg SJ, Raymond GV, Braverman NE, Moser AB. Zellweger spectrum disorder. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington, Seattle; 1993.

    Google Scholar 

  57. Eyssen H, Eggermont E, van Eldere J, Jaeken J, Parmentier G, Janssen G. Bile acid abnormalities and the diagnosis of cerebro-hepato-renal syndrome (Zellweger syndrome). Acta Paediatr Scand. 1985;74(4):539–44.

    Article  CAS  PubMed  Google Scholar 

  58. Hanson RF, Isenberg JN, Williams GC, Hachey D, Szczepanik P, Klein PD, et al. The metabolism of 3alpha, 7alpha, 12alpha-trihydorxy-5beta-cholestan-26-oic acid in two siblings with cholestasis due to intrahepatic bile duct anomalies. An apparent inborn error of cholic acid synthesis. J Clin Invest. 1975;56(3):577–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Setchell KD, Street JM. Inborn errors of bile acid synthesis. Semin Liver Dis. 1987;7(2):85–99.

    Article  CAS  PubMed  Google Scholar 

  60. Gardner LI. Letter: Intrahepatic bile stasis in 45,X Turner’s syndrome. N Engl J Med. 1974;290(7):406.

    CAS  PubMed  Google Scholar 

  61. Molland EA, Purcell M. Biliary atresia and the Dandy-Walker anomaly in a neonate with 45,X Turner’s syndrome. J Pathol. 1975;115(4):227–30.

    Article  CAS  PubMed  Google Scholar 

  62. Alpert LI, Strauss L, Hirschhorn K. Neonatal hepatitis and biliary atresia associated with trisomy 17-18 syndrome. N Engl J Med. 1969;280(1):16–20.

    Article  CAS  PubMed  Google Scholar 

  63. Puri P, Guiney EJ. Intrahepatic biliary atresia in Down’s syndrome. J Pediatr Surg. 1975;10(3):423–4.

    Article  CAS  PubMed  Google Scholar 

  64. Alagille D. Alpha-1-antitrypsin deficiency. Hepatology. 1984;4(1 Suppl):11S–4S.

    Article  CAS  PubMed  Google Scholar 

  65. Dorney SF, Hassall EG, Arbuckle SM, Vargas JH, Berquist WE. SZ phenotype alpha-1-antitrypsin deficiency with paucity of the interlobular bile ducts. Aust Paediatr J. 1987;23(1):55–6.

    CAS  PubMed  Google Scholar 

  66. Filipponi F, Soubrane O, Labrousse F, Devictor D, Bernard O, Valayer J, et al. Liver transplantation for end-stage liver disease associated with alpha-1-antitrypsin deficiency in children: pretransplant natural history, timing and results of transplantation. J Hepatol. 1994;20(1):72–8.

    Article  CAS  PubMed  Google Scholar 

  67. Malone M, Mieli-Vergani G, Mowat AP, Portmann B. The fetal liver in PiZZ alpha-1-antitrypsin deficiency: a report of five cases. Pediatr Pathol. 1989;9(6):623–31.

    Article  CAS  PubMed  Google Scholar 

  68. Spada F, Candiano G, Sergi C, Ghiggeri GM, Callea F, Gusmano R. Purification of alpha-1-antitrypsin monomer by preparative electrophoresis. J Clin Pathol. 1994;47(7):661–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Debray D, Narkewicz MR, Bodewes F, Colombo C, Housset C, de Jonge HR, et al. Cystic fibrosis-related liver disease: research challenges and future perspectives. J Pediatr Gastroenterol Nutr. 2017;65(4):443–8.

    Article  PubMed  Google Scholar 

  70. Staufer K, Halilbasic E, Trauner M, Kazemi-Shirazi L. Cystic fibrosis related liver disease—another black box in hepatology. Int J Mol Sci. 2014;15(8):13529–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Costa PC, Barreto CC, Pereira L, Lobo ML, Costa MA, Lopes AI. Cystic fibrosis-related liver disease: a single-center experience. Pediatr Rep. 2011;3(3):e21.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kamal N, Surana P, Koh C. Liver disease in patients with cystic fibrosis. Curr Opin Gastroenterol. 2018;34(3):146–51.

    PubMed  PubMed Central  Google Scholar 

  73. Furuya KN, Roberts EA, Canny GJ, Phillips MJ. Neonatal hepatitis syndrome with paucity of interlobular bile ducts in cystic fibrosis. J Pediatr Gastroenterol Nutr. 1991;12(1):127–30.

    Article  CAS  PubMed  Google Scholar 

  74. Colombo C, Battezzati PM, Crosignani A, Morabito A, Costantini D, Padoan R, et al. Liver disease in cystic fibrosis: a prospective study on incidence, risk factors, and outcome. Hepatology. 2002;36(6):1374–82.

    Article  PubMed  Google Scholar 

  75. Rowland M, Gallagher C, Gallagher CG, Laoide RO, Canny G, Broderick AM, et al. Outcome in patients with cystic fibrosis liver disease. J Cyst Fibros. 2015;14(1):120–6.

    Article  PubMed  Google Scholar 

  76. Leung AK, Hon KL, Leong KF, Sergi CM. Measles: a disease often forgotten but not gone. Hong Kong Med J. 2018;24:512–20.

    PubMed  Google Scholar 

  77. Kage M, Kosai K, Kojiro M, Nakamura Y, Fukuda S. Infantile cholestasis due to cytomegalovirus infection of the liver. A possible cause of paucity of interlobular bile ducts. Arch Pathol Lab Med. 1993;117(9):942–4.

    CAS  PubMed  Google Scholar 

  78. Stern H, Tucker SM. Cytomegalovirus infection in the newborn and in early childhood. Three atypical cases. Lancet. 1965;2(7425):1268–71.

    Article  CAS  PubMed  Google Scholar 

  79. O’Grady JG, Alexander GJ, Sutherland S, Donaldson PT, Harvey F, Portmann B, et al. Cytomegalovirus infection and donor/recipient HLA antigens: interdependent co-factors in pathogenesis of vanishing bile-duct syndrome after liver transplantation. Lancet. 1988;2(8606):302–5.

    Article  PubMed  Google Scholar 

  80. Strauss L, Bernstein J. Neonatal hepatitis in congenital rubella. A histopathological study. Arch Pathol. 1968;86(3):317–27.

    CAS  PubMed  Google Scholar 

  81. Huang YH, Shih HH, Tiao MM, Huang CC, Kuo KC, Huang FC, et al. Toll-like receptor 7 agonist induces hypoplasia of the biliary system in a neonatal mouse model. J Microbiol Immunol Infect. 2018;51(2):166–73.

    Article  CAS  PubMed  Google Scholar 

  82. Hertel PM, Estes MK. Rotavirus and biliary atresia: can causation be proven? Curr Opin Gastroenterol. 2012;28(1):10–7.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hicks J, Barrish J, Zhu SH. Neonatal syncytial giant cell hepatitis with paramyxoviral-like inclusions. Ultrastruct Pathol. 2001;25(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  84. Perrini S, Guidi B, Torelli P, Forte A. Parvovirus B19 associated acute cholestatic hepatitis. Pediatr Med Chir. 2014;36(5–6):102.

    CAS  PubMed  Google Scholar 

  85. Ferrante L, Rubaltelli FF. Intrahepatic biliary atresia associated with the presence of Australia-antigen. Padiatr Padol. 1971;6(3):225–9.

    CAS  PubMed  Google Scholar 

  86. Bader-Meunier B, Hadchouel M, Fabre M, Arnoud MD, Dommergues JP. Intrahepatic bile duct damage in children with Kawasaki disease. J Pediatr. 1992;120(5):750–2.

    Article  CAS  PubMed  Google Scholar 

  87. Tam PKH, Yiu RS, Lendahl U, Andersson ER. Cholangiopathies – towards a molecular understanding. EBioMedicine. 2018;35:381–93.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Amedee-Manesme O, Bernard O, Brunelle F, Hadchouel M, Polonovski C, Baudon JJ, et al. Sclerosing cholangitis with neonatal onset. J Pediatr. 1987;111(2):225–9.

    Article  CAS  PubMed  Google Scholar 

  89. Grammatikopoulos T, Sambrotta M, Strautnieks S, Foskett P, Knisely AS, Wagner B, et al. Mutations in DCDC2 (doublecortin domain containing protein 2) in neonatal sclerosing cholangitis. J Hepatol. 2016;65(6):1179–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yu TW, Mochida GH, Tischfield DJ, Sgaier SK, Flores-Sarnat L, Sergi CM, et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat Genet. 2010;42(11):1015–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cooke KR, Luznik L, Sarantopoulos S, Hakim FT, Jagasia M, Fowler DH, et al. The biology of chronic graft-versus-host disease: a task force report from the National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2017;23(2):211–34.

    Article  PubMed  Google Scholar 

  92. Oguma S, Belle S, Starzl TE, Demetris AJ. A histometric analysis of chronically rejected human liver allografts: insights into the mechanisms of bile duct loss: direct immunologic and ischemic factors. Hepatology. 1989;9(2):204–9.

    Article  CAS  PubMed  Google Scholar 

  93. Byrnes K, Oshima K. Liver transplant pathology: a timeline based approach and review. Diagn Histopathol. 2018;24:508–13. https://doi.org/10.1016/j.mpdhp.2018.09.002.

    Article  Google Scholar 

  94. Demetris AJ, Bellamy C, Hubscher SG, O’Leary J, Randhawa PS, Feng S, et al. 2016 comprehensive update of the Banff working group on liver allograft pathology: introduction of antibody-mediated rejection. Am J Transplant. 2016;16(10):2816–35.

    Article  CAS  PubMed  Google Scholar 

  95. NLM. Progressive Familial Intrahepatic Cholestasis. 9 Oct 2018. In: Genetics home reference [Internet]. Lister Hill National Center for Biomedical Communications, National Library of Medicine (US), National Institutes of Health, Department of Health & Human Services. Available from: https://ghr.nlm.nih.gov/condition/progressive-familial-intrahepatic-cholestasis.

  96. Oude Elferink RP, Kremer AE, Martens JJ, Beuers UH. The molecular mechanism of cholestatic pruritus. Dig Dis. 2011;29(1):66–71.

    Article  PubMed  CAS  Google Scholar 

  97. Mirza R, Abbas Z, Luck NH, Azam SM, Aziz S, Hassan SM, et al. Progressive familial intrahepatic cholestasis. J Coll Physicians Surg Pak. 2006;16(10):673–5.

    PubMed  Google Scholar 

  98. Yehezkely-Schildkraut V, Munichor M, Mandel H, Berkowitz D, Hartman C, Eshach-Adiv O, et al. Nonsyndromic paucity of interlobular bile ducts: report of 10 patients. J Pediatr Gastroenterol Nutr. 2003;37(5):546–9.

    Article  PubMed  Google Scholar 

  99. Jacquemin E. Progressive familial intrahepatic cholestasis. Clin Res Hepatol Gastroenterol. 2012;36(Suppl 1):S26–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Consolato M. Sergi .

Editor information

Editors and Affiliations

Self Study

Self Study

1.1 Questions

  1. 1.

    What are the three main stages of the development of the intrahepatic biliary system?

    1. (a)

      Protohepatic structure, Hepatic structure, Post-hepatic structure

    2. (b)

      Ductal plate, Remodeling Ductal Plate, Remodeled Bile Ducts

    3. (c)

      Remodeling Ductal Plate, Remodeled Bile Ducts, Remodeled Neoductules

    4. (d)

      Protocholangioles, Neocholangioles, Interlobular Bile Ducts

    5. (e)

      Ductal Plate, Remodeled Bile Ducts, Interlobular Bile Ducts

  1. 2.

    Which two genes are mostly involved in Alagille syndrome?

    1. (a)

      JAG1 and CFTR

    2. (b)

      PKHD1 and PKD2

    3. (c)

      CFTR and JAG1

    4. (d)

      PKHD1 and NOTCH2

    5. (e)

      JAG1 and NOTCH2

  1. 3.

    Which function does play the dominant gene of Primary Sclerosing Cholangitis?

    1. (a)

      Tubulin polymerization and centrosome assembly

    2. (b)

      Centrosome assembly and chromatid structure of the cell cycle

    3. (c)

      Tubulin binding and microtubule polymerization

    4. (d)

      Keratin-binding and microtubule polymerization

    5. (e)

      Cilia formation and centrosome assembly

1.2 Answers

  1. 1.

    What are the three main stages of the development of the intrahepatic biliary system?

    1. (a)

      Protohepatic structure, Hepatic structure, Post-hepatic structure

    2. (b)

      Ductal plate, Remodeling Ductal Plate, Remodeled Bile Ducts (CORRECT)

    3. (c)

      Remodeling Ductal Plate, Remodeled Bile Ducts, Remodeled Neoductules

    4. (d)

      Protocholangioles, Neocholangioles, Interlobular Bile Ducts

    5. (e)

      Ductal Plate, Remodeled Bile Ducts, Interlobular Bile Ducts

  1. 2.

    Which two genes are mostly involved in Alagille syndrome?

    1. (a)

      JAG1 and CFTR

    2. (b)

      PKHD1 and PKD2

    3. (c)

      CFTR and JAG1

    4. (d)

      PKHD1 and NOTCH2

    5. (e)

      JAG1 and NOTCH2 (CORRECT)

  1. 3.

    Which function does play the dominant gene of Primary Sclerosing Cholangitis?

    1. (a)

      Tubulin polymerization and centrosome assembly

    2. (b)

      Centrosome assembly and chromatid structure of the cell cycle

    3. (c)

      Tubulin binding and microtubule polymerization (CORRECT)

    4. (d)

      Keratin-binding and microtubule polymerization

    5. (e)

      Cilia formation and centrosome assembly

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sergi, C.M. (2020). The Paucity of Interlobular Bile Ducts. In: Radu-Ionita, F., Pyrsopoulos, N., Jinga, M., Tintoiu, I., Sun, Z., Bontas, E. (eds) Liver Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-24432-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24432-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24431-6

  • Online ISBN: 978-3-030-24432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics