Skip to main content

Resistance to Checkpoint Blockade Inhibitors and Immunomodulatory Drugs

  • Chapter
  • First Online:
Resistance to Targeted Therapies in Lymphomas

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 21))

  • 348 Accesses

Abstract

Cancer therapy has evolved from surgery and radiation to multi-agent chemotherapy, and although we have seen decreased mortality and increased cure rates, most of this therapy has continued to focus on the tumor itself, and not on the tumor microenvironment. Various cells within the tumor microenvironment have been implicated in leading to resistance to immune therapy. Through a complex system of steps, T-cells become activated after presentation of a specific antigen. Because continuous T-cell activation can lead to lymphoproliferation and unwanted autoimmunity, the human T-cell immune system has evolved into a process of checks-and-balances, referred to as immune checkpoints, that allows for co-inhibitory receptors to inhibit T-cell activation. Through the use of check point inhibitors, we have seen patients with cancers refractory to multiple treatments have durable responses, and in some, long term remissions. Some of the most studied inhibitors include Programmed Cell Death Protein 1 (PD-1) and Cytotoxic T Lymphocyte-Associated Antigen 4 (CTLA-4), although more have been identified. As we continue to explore possible treatment options for cancer, we must also be diligent in preemptively investigating how and why some patients will become resistant to these treatments, and what, if any, actions can be taken to circumvent this resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Antigen Presenting Cells

ASCT:

Autologous Stem Cell Transplant

BV:

Brentuximab Vedotin

CAF:

Cancer Associated Fibroblasts

COG:

Children’s Oncology Group

CTLA-4:

Cytotoxic T-Lymphocyte Associated Antigen-4

FDA:

Food and Drug Administration

HL:

Hodgkin Lymphoma

HSC:

Hematopoietic Stem Cells

ICAM:

Intracellular Activation Motifs

ICOS+:

Inducible Costimulatory

IDO:

Indoleamine 2, 3-Droxygenase

ITAM:

Immunoreceptor Tyrosine Based Activation Motifs

LAG-3:

Lymphocyte Activation Gene 3

MDSC:

Myeloid Derived Suppressor Cells

MHC:

Major Histocompatibility Complex

MHC I:

Major Histocompatibility Complex Class I

MHC II:

Major Histocompatibility Complex Class II

NSCLC:

Non-small Cell Lung Cancer

ORR:

Objective Response Rate

OS:

Overall Survival

PD-1:

Programmed Cell Death Protein 1

PD-L1:

Programmed Cell Death Ligand 1

PD-L2:

Programmed Cell Death Ligand 2

PFS:

Progressive Free Survival

R/R:

Relapsed/Refractory

TAM:

Tumor Associated Macrophages

TCR:

T-Cell Receptors

TIM-3:

T-cell Immunoglobulin Mucin 3

Treg:

Regulatory T-cells

References

  1. Yuan Y, Jiang YC, Sun CK, Chen QM. Role of the tumor microenvironment in tumor progression and the clinical applications (review). Oncol Rep. 2016;35(5):2499–515.

    Article  CAS  Google Scholar 

  2. Wang Q, Wu X. Primary and acquired resistance to PD-1/PD-L1 blockade in cancer treatment. Int Immunopharmacol. 2017;46:210–9.

    Article  CAS  Google Scholar 

  3. Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348(6230):74–80.

    Article  CAS  Google Scholar 

  4. Hui L, Chen Y. Tumor microenvironment: sanctuary of the devil. Cancer Lett. 2015;368(1):7–13.

    Article  CAS  Google Scholar 

  5. Vardhana S, Younes A. The immune microenvironment in Hodgkin lymphoma: T cells, B cells, and immune checkpoints. Haematologica. 2016;101(7):794–802.

    Article  CAS  Google Scholar 

  6. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707–23.

    Article  CAS  Google Scholar 

  7. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61.

    Article  CAS  Google Scholar 

  8. Orkin SH, Nathan DG. Nathan and Oski’s hematology of infancy and childhood, vol. xxvi. 7th ed. Philadelphia: Saunders/Elsevier; 2009. p. 1841.

    Google Scholar 

  9. Rothenberg EV, Taghon T. Molecular genetics of T cell development. Annu Rev Immunol. 2005;23:601–49.

    Article  CAS  Google Scholar 

  10. Grossi CE, Favre A, Giunta M, Corte G. T cell differentiation in the thymus. Cytotechnology. 1991;5(Suppl 1):113–6.

    Article  CAS  Google Scholar 

  11. Viret C, Janeway CA Jr. MHC and T cell development. Rev Immunogenet. 1999;1(1):91–104.

    CAS  PubMed  Google Scholar 

  12. Veillette A, Bookman MA, Horak EM, Bolen JB. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell. 1988;55(2):301–8.

    Article  CAS  Google Scholar 

  13. Nel AE. T-cell activation through the antigen receptor. Part 1: signaling components, signaling pathways, and signal integration at the T-cell antigen receptor synapse. J Allergy Clin Immun. 2002;109(5):758–70.

    Article  CAS  Google Scholar 

  14. Colombo MP, Piconese S. Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer. 2007;7(11):880–7.

    Article  CAS  Google Scholar 

  15. Intlekofer AM, Thompson CB. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J Leukoc Biol. 2013;94(1):25–39.

    Article  CAS  Google Scholar 

  16. Hude I, Sasse S, Engert A, Brockelmann PJ. The emerging role of immune checkpoint inhibition in malignant lymphoma. Haematologica. 2017;102(1):30–42.

    Article  CAS  Google Scholar 

  17. Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, et al. A new member of the immunoglobulin superfamily—CTLA-4. Nature. 1987;328(6127):267–70.

    Article  CAS  Google Scholar 

  18. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.

    Article  CAS  Google Scholar 

  19. Auchincloss H, Turka LA. CTLA-4: not all costimulation is stimulatory. J Immunol. 2011;187(7):3457–8.

    Article  CAS  Google Scholar 

  20. Menter T, Tzankov A. Mechanisms of immune evasion and immune modulation by lymphoma cells. Front Oncol. 2018;8:54.

    Article  Google Scholar 

  21. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  Google Scholar 

  22. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  Google Scholar 

  23. Maio M, Grob JJ, Aamdal S, Bondarenko I, Robert C, Thomas L, et al. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J Clin Oncol. 2015;33(10):1191–6.

    Article  CAS  Google Scholar 

  24. Ribas A. Tumor immunotherapy directed at PD-1. N Engl J Med. 2012;366(26):2517–9.

    Article  CAS  Google Scholar 

  25. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26.

    Article  CAS  Google Scholar 

  26. Bashey A, Medina B, Corringham S, Pasek M, Carrier E, Vrooman L, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113(7):1581–8.

    Article  CAS  Google Scholar 

  27. Diefenbach CS, Hong FX, Cohen JB, Robertson MJ, Ambinder RF, Fenske TS, et al. Preliminary safety and efficacy of the combination of Brentuximab Vedotin and Ipilimumab in relapsed/refractory Hodgkin lymphoma: a trial of the ECOG-ACRIN Cancer research group (E4412). Blood. 2015;126:23.

    Google Scholar 

  28. Oiseth SJ, Aziz Mohamed S. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat. 2017;3:250–61.

    Article  CAS  Google Scholar 

  29. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med. 2015;372(26):2521–32.

    Article  CAS  Google Scholar 

  30. Ribas A, Wolchok JD, Robert C, Kefford R, Hamid O, Daud A, et al. Updated clinical efficacy of the anti-Pd-1 monoclonal antibody Pembrolizumab (Mk-3475) in 411 patients with Melanoma. Eur J Cancer. 2015;51:E24–E.

    Article  Google Scholar 

  31. Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16(8):908–18.

    Article  CAS  Google Scholar 

  32. Schachter J, Ribas A, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet. 2017;390(10105):1853–62.

    Article  CAS  Google Scholar 

  33. Goodman A, Patel SP, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol. 2017;14(4):203–20.

    Article  CAS  Google Scholar 

  34. Armand P, Shipp MA, Ribrag V, Michot JM, Zinzani PL, Kuruvilla J, et al. Programmed death-1 blockade with Pembrolizumab in patients with classical Hodgkin lymphoma after Brentuximab Vedotin failure. J Clin Oncol. 2016;34(31):3733–9.

    Article  CAS  Google Scholar 

  35. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42.

    Article  Google Scholar 

  36. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.

    Article  Google Scholar 

  37. Armand P, Engert A, Younes A, Fanale M, Santoro A, Zinzani PL, et al. Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase II CheckMate 205 trial. J Clin Oncol. 2018;36(14):1428–39.

    Article  CAS  Google Scholar 

  38. ClinicalTrials.gov. Risk-based, Response-adapted, Phase II Open-label Trial of Nivolumab + Brentuximab Vedotin (N + Bv) for Children, Adolescents, and Young Adults With Relapsed/Refractory (R/R) CD30 + Classic Hodgkin Lymphoma (cHL) After Failure of First-line Therapy, Followed by Brentuximab + Bendamustine (Bv + B) for Participants With a Suboptimal Response (CheckMate 744: CHECKpoint Pathway and Nivolumab Clinical Trial Evaluation) [cited 2018 October 7, 2016]. Available from: https://clinicaltrials.gov/ct2/show/NCT02927769.

  39. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17.

    Article  Google Scholar 

  40. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, et al. Overall survival with combined Nivolumab and Ipilimumab in advanced melanoma. New Engl J Med. 2017;377(14):1345–56.

    Article  CAS  Google Scholar 

  41. Michot JM, Lazarovici J, Ghez D, Danu A, Ferme C, Bigorgne A, et al. Challenges and perspectives in the immunotherapy of Hodgkin lymphoma. Eur J Cancer. 2017;85:67–77.

    Article  CAS  Google Scholar 

  42. Roemer MG, Advani RH, Ligon AH, Natkunam Y, Redd RA, Homer H, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol. 2016;34(23):2690–7.

    Article  CAS  Google Scholar 

  43. Bellmunt J, Powles T, Vogelzang NJ. A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: the future is now. Cancer Treat Rev. 2017;54:58–67.

    Article  CAS  Google Scholar 

  44. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.

    Article  Google Scholar 

  45. Heigener DF, Reck M. Advanced non-small cell lung cancer: the role of PD-L1 inhibitors. J Thorac Dis. 2018;10(Suppl 13):S1468–S73.

    Article  Google Scholar 

  46. Shirley M. Avelumab: a review in metastatic Merkel cell carcinoma. Target Oncol. 2018;13(3):409–16.

    Article  Google Scholar 

  47. O’Donnell JS, Long GV, Scolyer RA, Teng MW, Smyth MJ. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev. 2017;52:71–81.

    Article  Google Scholar 

  48. O’Donnell JS, Smyth MJ, Teng MW. Acquired resistance to anti-PD1 therapy: checkmate to checkpoint blockade? Genome Med. 2016;8(1):111.

    Article  Google Scholar 

  49. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–29.

    Article  CAS  Google Scholar 

  50. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    Article  CAS  Google Scholar 

  51. Teng MW, Ngiow SF, Ribas A, Smyth MJ. Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res. 2015;75(11):2139–45.

    Article  CAS  Google Scholar 

  52. Tang H, Wang Y, Chlewicki LK, Zhang Y, Guo J, Liang W, et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell. 2016;29(3):285–96.

    Article  CAS  Google Scholar 

  53. Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 2017;170(6):1120–33 e17.

    Article  CAS  Google Scholar 

  54. Bai J, Gao Z, Li X, Dong L, Han W, Nie J. Regulation of PD-1/PD-L1 pathway and resistance to PD-1/PD-L1 blockade. Oncotarget. 2017;8(66):110693–707.

    Article  Google Scholar 

  55. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.

    Article  CAS  Google Scholar 

  56. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 2018;118(1):9–16.

    Article  CAS  Google Scholar 

  57. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    Article  CAS  Google Scholar 

  58. Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, et al. Evolution of Neoantigen landscape during immune checkpoint blockade in non-small cell lung Cancer. Cancer Discov. 2017;7(3):264–76.

    Article  CAS  Google Scholar 

  59. Li L, Dong M, Wang XG. The implication and significance of Beta 2 microglobulin: a conservative multifunctional regulator. Chin Med J. 2016;129(4):448–55.

    Article  Google Scholar 

  60. Roemer MG, Advani RH, Redd RA, Pinkus GS, Natkunam Y, Ligon AH, et al. Classical Hodgkin lymphoma with reduced beta2M/MHC class I expression is associated with inferior outcome independent of 9p24.1 status. Cancer Immunol Res. 2016;4(11):910–6.

    Article  CAS  Google Scholar 

  61. Loi S, Pommey S, Haibe-Kains B, Beavis PA, Darcy PK, Smyth MJ, et al. CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci USA. 2013;110(27):11091–6.

    Article  CAS  Google Scholar 

  62. Beavis PA, Milenkovski N, Henderson MA, John LB, Allard B, Loi S, et al. Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses. Cancer Immunol Res. 2015;3(5):506–17.

    Article  CAS  Google Scholar 

  63. Ribas A. Releasing the brakes on Cancer immunotherapy. N Engl J Med. 2015;373(16):1490–2.

    Article  Google Scholar 

  64. Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29–39.

    Article  CAS  Google Scholar 

  65. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378(2):158–68.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part from the Pediatric Cancer Research Foundation and St. Baldrick’s Foundation. The authors would like to thank Virginia Davenport, RN and Erin Morris, RN in their assistance in the preparation of this manuscript.

Disclosure of Conflict of Interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony N. Audino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Audino, A.N., Cairo, M.S. (2019). Resistance to Checkpoint Blockade Inhibitors and Immunomodulatory Drugs. In: Xavier, A., Cairo, M. (eds) Resistance to Targeted Therapies in Lymphomas . Resistance to Targeted Anti-Cancer Therapeutics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-24424-8_7

Download citation

Publish with us

Policies and ethics