Resistance to Targeted Therapies in Lymphomas pp 111-153 | Cite as
Resistance to Bruton’s Tyrosine Kinase Signaling Pathway Targeted Therapies
- 1 Citations
- 216 Downloads
Abstract
Activation of B-cell receptor (BCR) signaling is an important mechanism of the development and growth of B-cell lymphomas. Bruton’s tyrosine kinase (BTK) is a key component of BCR signaling and functions as an important regulator of cell proliferation and cell survival in various B-cell lymphomas. BTK inhibitors, especially ibrutinib, have shown promising anti-tumor activity in preclinical and clinical studies. High response rates of ibrutinib were reported in patients with a variety of B-cell non-Hodgkin lymphoma (B-NHL) such as chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL). However, clinical evidence shows primary and acquired resistance to BTK inhibitors in patients. Understanding the molecular mechanisms underlying BTK inhibitors’ resistance is of paramount importance. In this review, we highlight the potential resistant mechanisms, which include mutational resistance in BTK, mutational resistance in other proteins than in BTK, chromosomal abnormalities, activation of prosurvival pathways, B-cell lymphoma 2 (BCL-2) family members mediated resistance, and tumor microenvironment mediated resistance. We also discuss the strategies that are utilized to overcome BTK inhibitors’ resistance: non-covalent inhibitors of BTK, alternate kinase inhibitors, combination therapies with other oncogenic inhibitors, BCL-2 inhibitors, anti-CD20 antibodies, anti-CD19 chimeric antigen receptor (CAR) T cells, CD19/CD3 bispecific antibody, or with inhibitors targeting other cellular processes.
Keywords
Targeted therapies Bruton’s tyrosine kinase Ibrutinib Drug resistance B-cell lymphoma Activation of B-cell receptorAbbreviations
- ABC-DLBCL
Activated B-Cell- Diffuse Large B-cell Lymphoma
- AKT
Protein Kinase B
- AS-PCR
Allele-Specific Polymerase Chain Reaction
- BCR
Activation of B Cell Receptor
- BCL-2
B-Cell Lymphoma 2
- BL
Burkitt Lymphoma
- B-NHL
B cell Non-Hodgkin Lymphoma
- BLNK
B-cell Linker Protein
- BTK
Bruton’s Tyrosine Kinase
- CAR
Chimeric Antigen Receptor
- CCND1
Cell Cycle Regulator Cycline D1
- CLL
Chronic Lymphocytic Leukemia
- CARD11
Caspase Recruitment Domain Family, Member 11
- CDK4
Cyclin-Dependent Kinase 4
- CR
Complete Response
- CRM1/XPO1
Chromosome Region Maintenance1/Exportin-1 Protein
- CXCR4
C-X-C Chemokine Receptor type 4
- DPPYs
Diphenylpyrimidine Derivatives
- DLBCL
Diffuse Large B-cell Lymphoma
- DLT
Dose-Limited Toxicities
- EFS
Event Free Survival
- EGFR
Epidermal Growth Factor Receptor
- EIF2A
Eukaryotic Translation Initiation Factor 2A
- ERK
Extracellular Signal-Regulated Kinase
- FDA
Food and Drug Administration
- FL
Follicular Lymphoma
- FLIPI
Follicular Lymphoma International Prognostic Index
- GBC
Germinal Center B cell
- HCL
Hairy cell Lymphoma
- HDAC
Histone Deacetylase
- HL
Hodgkin Lymphoma
- IC50
Half Maximal Inhibitory Concentration
- IκB
Inhibitor of Kappa B
- IKKb
Inhibitor of Kappa Light Polypeptide Gene Enhancer in B-cells
- ITAM
Immunoreceptor Tyrosine-Based Activation Motifs
- Itk
Interleukin-2-Inducible T-Cell Kinase
- LCK
Lymphocyte-Specific Protein Tyrosine Kinase
- LNA
Locked Nucleic Acid
- MALT1
Mucosa Associated Lymphoid Tissue Lymphoma Translocation Protein 1
- MAPK
Mitogen-Activated Protein Kinase
- MCL
Mantle Cell Lymphoma
- MLL2
Mixed Lineage Leukemia 2
- MOMP
Mitochondrial Outer Membrane Permeability
- MPFS
Median Progression-Free Survival
- MRD
Minimal Residual Disease
- mTOR
Mechanistic Target of Rapamycin
- MYD88
Myeloid Differentiation Primary Response Gene (88)
- MZL
Marginal zone Lymphoma
- NHL
Non-Hodgkin’s Lymphoma
- NF-κB
Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B cells
- NGS
Next-Generation Sequencing
- NIK
NF-Kappa-B-Inducing Kinase
- NSG
NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ
- OS
Overall Survival
- ORR
Overall Response Rate
- P
Phosphorylation
- PARP-1
Poly [ADP-ribose] Polymerase 1
- PFS
Progression-Free Survival
- PH
Pleckstrin Homology
- PI3K
Phosphoinositide 3-Kinase
- PIM1
Serine/threonine Kinase pim-1
- PIP3
Phosphatidylinositol (3,4,5)-Trisphosphate
- PLCγ2
1-phosphatidylinositol-4,5-Bisphosphate Phosphodiesterase Gamma-2
- PMBCL
Primary Mediastinal B-cell Lymphoma
- PR
Partial Response
- RPS15
40S Ribosomal Protein S15
- R/R
Relapsed/Refractory
- scFv
Single Chain Fragment of Variable Region
- SFK
Src Family Tyrosine Kinases
- SH2
Src Homology 2
- SH3
Src Homology 3
- SNPs
Single Nucleotide Polymorphisms
- SLL
Small Lymphocytic Lymphoma
- SYK
Spleen Tyrosine Kinase
- Tec
Tyrosine Kinase Expressed in Hepatocellular Carcinoma
- TLR
Toll-Like Receptor
- TME
Tumor Microenvironment
- TRAIL
Tumor Necrosis Factor Related Apoptosis Inducing Ligand
- TRAIL-R
Tumor Necrosis Factor Related Apoptosis Inducing Ligand Receptors
- Txk
Tyrosine-Protein Kinase TXK
- WES
Whole-Exome Sequencing
- WM
Waldenström’s Macroglobulinemia
- XLA
X-Linked Agammaglobulinemia
- 2p+
Gain of the Short Arm of Chromosome 2
Notes
Acknowledgements
This work was supported by the grants from Pediatric Cancer Research Foundation (MSC) and New York Medical College Translational Science Institute, Children Health Translational Research Grant (YC). YC reviewed the literatures, developed the design of the paper and wrote the manuscript. MSC and AB critically revised the manuscript and have approved the final version for publication. The authors would like to thank Erin Morris, RN, and Virginia Davenport, RN for their excellent assistance with the preparation of this manuscript.
Disclosure of Conflict of Interest
No potential conflicts of interest were disclosed.
References
- 1.Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117(19):5019–32.PubMedPubMedCentralCrossRefGoogle Scholar
- 2.Cairo MS, Krailo MD, Morse M, Hutchinson RJ, Harris RE, Kjeldsberg CR, Kadin ME, Radel E, Steinherz LJ, Morris E, Finlay JL, Meadows AT. Long-term follow-up of short intensive multiagent chemotherapy without high-dose methotrexate (‘Orange’) in children with advanced non-lymphoblastic non-Hodgkin’s lymphoma: a children’s cancer group report. Leukemia. 2002;16(4):594–600.PubMedCrossRefPubMedCentralGoogle Scholar
- 3.Cairo MS, Sposto R, Perkins SL, Meadows AT, Hoover-Regan ML, Anderson JR, Siegel SE, Lones MA, Tedeschi-Blok N, Kadin ME, Kjeldsberg CR, Wilson JF, Sanger W, Morris E, Krailo MD, Finlay JL. Burkitt’s and Burkitt-like lymphoma in children and adolescents: a review of the Children’s Cancer group experience. Br J Haematol. 2003;120(4):660–70.PubMedCrossRefPubMedCentralGoogle Scholar
- 4.Miles RR, Arnold S, Cairo MS. Risk factors and treatment of childhood and adolescent Burkitt lymphoma/leukaemia. Br J Haematol. 2012;156(6):730–43.PubMedCrossRefPubMedCentralGoogle Scholar
- 5.Cairo MS, Gerrard M, Sposto R, Auperin A, Pinkerton CR, Michon J, Weston C, Perkins SL, Raphael M, McCarthy K, Patte C, Committee FLIS. Results of a randomized international study of high-risk central nervous system B non-Hodgkin lymphoma and B acute lymphoblastic leukemia in children and adolescents. Blood. 2007;109(7):2736–43.PubMedPubMedCentralGoogle Scholar
- 6.Gerrard M, Cairo MS, Weston C, Auperin A, Pinkerton R, Lambilliote A, Sposto R, McCarthy K, Lacombe MJ, Perkins SL, Patte C. Excellent survival following two courses of COPAD chemotherapy in children and adolescents with resected localized B-cell non-Hodgkin’s lymphoma: results of the FAB/LMB 96 international study. Br J Haematol. 2008;141(6):840–7.PubMedCrossRefPubMedCentralGoogle Scholar
- 7.Patte C, Auperin A, Gerrard M, Michon J, Pinkerton R, Sposto R, Weston C, Raphael M, Perkins SL, McCarthy K, Cairo MS, Committee FLIS. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–80.PubMedPubMedCentralGoogle Scholar
- 8.Cairo MS, Sposto R, Gerrard M, Auperin A, Goldman SC, Harrison L, Pinkerton R, Raphael M, McCarthy K, Perkins SL, Patte C. Advanced stage, increased lactate dehydrogenase, and primary site, but not adolescent age (>/= 15 years), are associated with an increased risk of treatment failure in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB LMB 96 study. J Clin Oncol. 2012;30(4):387–93.PubMedPubMedCentralCrossRefGoogle Scholar
- 9.Rickert RC. New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat Rev Immunol. 2013;13(8):578–91.PubMedCrossRefPubMedCentralGoogle Scholar
- 10.Kraus M, Alimzhanov MB, Rajewsky N, Rajewsky K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer. Cell. 2004;117(6):787–800.PubMedCrossRefPubMedCentralGoogle Scholar
- 11.Havranek O, Xu J, Kohrer S, Wang Z, Becker L, Comer JM, Henderson J, Ma W, Man Chun Ma J, Westin JR, Ghosh D, Shinners N, Sun L, Yi AF, Karri AR, Burger JA, Zal T, Davis RE. Tonic B-cell receptor signaling in diffuse large B-cell lymphoma. Blood. 2017;130(8):995–1006.PubMedPubMedCentralCrossRefGoogle Scholar
- 12.Martinez N, Almaraz C, Vaque JP, Varela I, Derdak S, Beltran S, Mollejo M, Campos-Martin Y, Agueda L, Rinaldi A, Kwee I, Gut M, Blanc J, Oscier D, Strefford JC, Martinez-Lopez J, Salar A, Sole F, Rodriguez-Peralto JL, Diez-Tascon C, Garcia JF, Fraga M, Sebastian E, Alves J, Menarguez J, Gonzalez-Carrero J, Casado LF, Bayes M, Bertoni F, Gut I, Piris MA. Whole-exome sequencing in splenic marginal zone lymphoma reveals mutations in genes involved in marginal zone differentiation. Leukemia. 2014;28(6):1334–40.PubMedCrossRefPubMedCentralGoogle Scholar
- 13.Krysiak K, Gomez F, White BS, Matlock M, Miller CA, Trani L, Fronick CC, Fulton RS, Kreisel F, Cashen AF, Carson KR, Berrien-Elliott MM, Bartlett NL, Griffith M, Griffith OL, Fehniger TA. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma. Blood. 2017;129(4):473–83.PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Corso J, Pan KT, Walter R, Doebele C, Mohr S, Bohnenberger H, Strobel P, Lenz C, Slabicki M, Hullein J, Comoglio F, Rieger MA, Zenz T, Wienands J, Engelke M, Serve H, Urlaub H, Oellerich T. Elucidation of tonic and activated B-cell receptor signaling in Burkitt’s lymphoma provides insights into regulation of cell survival. Proc Natl Acad Sci USA. 2016;113(20):5688–93.PubMedCrossRefPubMedCentralGoogle Scholar
- 15.Burger JA, Wiestner A. Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat Rev Cancer. 2018;18(3):148–67.PubMedCrossRefPubMedCentralGoogle Scholar
- 16.Weber ANR, Bittner Z, Liu X, Dang TM, Radsak MP, Brunner C. Bruton’s tyrosine kinase: an emerging key player in innate immunity. Front Immunol. 2017;8:1454.PubMedPubMedCentralCrossRefGoogle Scholar
- 17.Buhl AM, Cambier JC. Phosphorylation of CD19 Y484 and Y515, and linked activation of phosphatidylinositol 3-kinase, are required for B cell antigen receptor-mediated activation of Bruton’s tyrosine kinase. J Immunol. 1999;162(8):4438–46.PubMedPubMedCentralGoogle Scholar
- 18.Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F, Hammarstrom L, Kinnon C, Levinsky R, Bobrow M, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993;361(6409):226–33.PubMedCrossRefPubMedCentralGoogle Scholar
- 19.Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, Sparkes RS, Kubagawa H, Mohandas T, Quan S, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72(2):279–90.PubMedCrossRefPubMedCentralGoogle Scholar
- 20.Mohamed AJ, Nore BF, Christensson B, Smith CI. Signalling of Bruton’s tyrosine kinase, Btk. Scand J Immunol. 1999;49(2):113–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 21.Wahl MI, Fluckiger AC, Kato RM, Park H, Witte ON, Rawlings DJ. Phosphorylation of two regulatory tyrosine residues in the activation of Bruton’s tyrosine kinase via alternative receptors. Proc Natl Acad Sci USA. 1997;94(21):11526–33.PubMedCrossRefPubMedCentralGoogle Scholar
- 22.Mohamed AJ, Yu L, Backesjo CM, Vargas L, Faryal R, Aints A, Christensson B, Berglof A, Vihinen M, Nore BF, Smith CI. Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev. 2009;228(1):58–73.PubMedCrossRefPubMedCentralGoogle Scholar
- 23.Di Paolo JA, Huang T, Balazs M, Barbosa J, Barck KH, Bravo BJ, Carano RA, Darrow J, Davies DR, DeForge LE, Diehl L, Ferrando R, Gallion SL, Giannetti AM, Gribling P, Hurez V, Hymowitz SG, Jones R, Kropf JE, Lee WP, Maciejewski PM, Mitchell SA, Rong H, Staker BL, Whitney JA, Yeh S, Young WB, Yu C, Zhang J, Reif K, Currie KS. Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat Chem Biol. 2011;7(1):41–50.PubMedCrossRefPubMedCentralGoogle Scholar
- 24.Hendriks RW, de Bruijn MF, Maas A, Dingjan GM, Karis A, Grosveld F. Inactivation of Btk by insertion of lacZ reveals defects in B cell development only past the pre-B cell stage. EMBO J. 1996;15(18):4862–72.PubMedPubMedCentralCrossRefGoogle Scholar
- 25.Vihinen M, Brandau O, Branden LJ, Kwan SP, Lappalainen I, Lester T, Noordzij JG, Ochs HD, Ollila J, Pienaar SM, Riikonen P, Saha BK, Smith CI. BTKbase, mutation database for X-linked agammaglobulinemia (XLA). Nucleic Acids Res. 1998;26(1):242–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 26.Thomas JD, Sideras P, Smith CI, Vorechovsky I, Chapman V, Paul WE. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science. 1993;261(5119):355–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 27.Qiu Y, Kung HJ. Signaling network of the Btk family kinases. Oncogene. 2000;19(49):5651–61.PubMedCrossRefPubMedCentralGoogle Scholar
- 28.Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB, Kohlhammer H, Lamy L, Zhao H, Yang Y, Xu W, Shaffer AL, Wright G, Xiao W, Powell J, Jiang JK, Thomas CJ, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Connors JM, Johnson NA, Rimsza LM, Campo E, Jaffe ES, Wilson WH, Delabie J, Smeland EB, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Pierce SK, Staudt LM. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463(7277):88–92.PubMedPubMedCentralCrossRefGoogle Scholar
- 29.Young RM, Staudt LM. Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat Rev Drug Discov. 2013;12(3):229–43.PubMedCrossRefPubMedCentralGoogle Scholar
- 30.Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, Li S, Pan Z, Thamm DH, Miller RA, Buggy JJ. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA. 2010;107(29):13075–80.PubMedCrossRefPubMedCentralGoogle Scholar
- 31.Mathews Griner LA, Guha R, Shinn P, Young RM, Keller JM, Liu D, Goldlust IS, Yasgar A, McKnight C, Boxer MB, Duveau DY, Jiang JK, Michael S, Mierzwa T, Huang W, Walsh MJ, Mott BT, Patel P, Leister W, Maloney DJ, Leclair CA, Rai G, Jadhav A, Peyser BD, Austin CP, Martin SE, Simeonov A, Ferrer M, Staudt LM, Thomas CJ. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells. Proc Natl Acad Sci USA. 2014;111(6):2349–54.PubMedCrossRefPubMedCentralGoogle Scholar
- 32.Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S, Flynn J, Jones J, Blum KA, Buggy JJ, Hamdy A, Johnson AJ, Byrd JC. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117(23):6287–96.PubMedPubMedCentralCrossRefGoogle Scholar
- 33.Cinar M, Hamedani F, Mo Z, Cinar B, Amin HM, Alkan S. Bruton tyrosine kinase is commonly overexpressed in mantle cell lymphoma and its attenuation by Ibrutinib induces apoptosis. Leuk Res. 2013;37(10):1271–7.PubMedCrossRefPubMedCentralGoogle Scholar
- 34.Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE, Grant B, Kolibaba KS, Furman RR, Rodriguez S, Chang BY, Sukbuntherng J, Izumi R, Hamdy A, Hedrick E, Fowler NH. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31(1):88–94.CrossRefGoogle Scholar
- 35.Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS, Jurczak W, Advani RH, Romaguera JE, Williams ME, Barrientos JC, Chmielowska E, Radford J, Stilgenbauer S, Dreyling M, Jedrzejczak WW, Johnson P, Spurgeon SE, Li L, Zhang L, Newberry K, Ou Z, Cheng N, Fang B, McGreivy J, Clow F, Buggy JJ, Chang BY, Beaupre DM, Kunkel LA, Blum KA. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369(6):507–16.PubMedPubMedCentralCrossRefGoogle Scholar
- 36.Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, Grant B, Sharman JP, Coleman M, Wierda WG, Jones JA, Zhao W, Heerema NA, Johnson AJ, Sukbuntherng J, Chang BY, Clow F, Hedrick E, Buggy JJ, James DF, O'Brien S. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42.PubMedPubMedCentralCrossRefGoogle Scholar
- 37.Aalipour A, Advani RH. Bruton tyrosine kinase inhibitors: a promising novel targeted treatment for B cell lymphomas. Br J Haematol. 2013;163(4):436–43.PubMedPubMedCentralCrossRefGoogle Scholar
- 38.Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE, Grant B, Kolibaba KS, Furman RR, Rodriguez S, Chang BY, Sukbuntherng J, Izumi R, Hamdy A, Hedrick E, Fowler NH. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31(1):88–94.CrossRefGoogle Scholar
- 39.Treon SP, Tripsas CK, Meid K, Warren D, Varma G, Green R, Argyropoulos KV, Yang G, Cao Y, Xu L, Patterson CJ, Rodig S, Zehnder JL, Aster JC, Harris NL, Kanan S, Ghobrial I, Castillo JJ, Laubach JP, Hunter ZR, Salman Z, Li J, Cheng M, Clow F, Graef T, Palomba ML, Advani RH. Ibrutinib in previously treated Waldenstrom’s macroglobulinemia. N Engl J Med. 2015;372(15):1430–40.PubMedCrossRefPubMedCentralGoogle Scholar
- 40.Fernandez-Vega I, Quiros LM, Santos-Juanes J, Pane-Foix M, Marafioti T. Bruton’s tyrosine kinase (Btk) is a useful marker for Hodgkin and B cell non-Hodgkin lymphoma. Virchows Arch. 2015;466(2):229–35.PubMedCrossRefPubMedCentralGoogle Scholar
- 41.Hamadani M, Balasubramanian S, Hari PN. Ibrutinib in refractory classic Hodgkin’s lymphoma. N Engl J Med. 2015;373(14):1381–2.PubMedCrossRefPubMedCentralGoogle Scholar
- 42.Sachen KL, Strohman MJ, Singletary J, Alizadeh AA, Kattah NH, Lossos C, Mellins ED, Levy S, Levy R. Self-antigen recognition by follicular lymphoma B-cell receptors. Blood. 2012;120(20):4182–90.PubMedPubMedCentralCrossRefGoogle Scholar
- 43.Fowler HN, Advani HR, Sharman J, Smith MS, McGreivy J, Kunkel L, Troung V, Zhou C, Boyd TE. The Bruton’s tyrosine kinase inhibitor ibrutinib (PCI-32765) is active and tolerated in relapsed follicular lymphoma. Blood. 2012;120:156.Google Scholar
- 44.Bartlett NL, Costello BA, LaPlant BR, Ansell SM, Kuruvilla JG, Reeder CB, Thye LS, Anderson DM, Krysiak K, Ramirez C, Qi J, Siegel BA, Griffith M, Griffith OL, Gomez F, Fehniger TA. Single-agent ibrutinib in relapsed or refractory follicular lymphoma: a phase 2 consortium trial. Blood. 2018;131(2):182–90.PubMedPubMedCentralCrossRefGoogle Scholar
- 45.Gopal AK, Schuster SJ, Fowler N, Trotman J, Hess G, Hou JZ, Yacoub A, Lill M, Martin P, Vitolo U, Jurczak W, Morton J, Osmanov D, Gartenberg GJ, Vermeulen J, Balasubramanian S, Wang SS, Deshpande S, Salles GA. Ibrutinib as treatment for Chemoimmunotherapy-resistant Patients with follicular Lymphoma: first results from the open-label, multicenter, phase 2 DAWN study. Blood. 2016;128:1217.Google Scholar
- 46.Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, Kohlhammer H, Xu W, Yang Y, Zhao H, Shaffer AL, Romesser P, Wright G, Powell J, Rosenwald A, Muller-Hermelink HK, Ott G, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Staudt LM. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470(7332):115–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 47.Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW, Dave SS, Zhao H, Xu W, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Fisher RI, Chan WC, Staudt LM. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science. 2008;319(5870):1676–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 48.Kraan W, Horlings HM, van Keimpema M, Schilder-Tol EJ, Oud ME, Scheepstra C, Kluin PM, Kersten MJ, Spaargaren M, Pals ST. High prevalence of oncogenic MYD88 and CD79B mutations in diffuse large B-cell lymphomas presenting at immune-privileged sites. Blood Cancer J. 2013;3:e139.PubMedPubMedCentralCrossRefGoogle Scholar
- 49.Wilson WH, Gerecitano JF, Goy A, de Vos S, Kenkre VP, Barr PM, Blum KA, Shustov AR, Advani RH, Lih J, Williams M, Schmitz R, Yang Y, Pittaluga S, Wright G, Kunkel LA, McGreivy J, Balasubramanian S, Cheng M, Moussa D, Buggy J, Staudt LM. The bruton’s tyrosine kinase (BTK) inhibitor, ibrutinib (PCI-32765), has preferential activity in the ABC subtype of relapsed/refractory De Novo Diffuse Large B-Cell Lymphoma (DLBCL): interim results of a multicenter, open-label, phase 2 study. Blood. 2012;120:686.Google Scholar
- 50.Byrd JC, Brown JR, O’Brien S, Barrientos JC, Kay NE, Reddy NM, Coutre S, Tam CS, Mulligan SP, Jaeger U, Devereux S, Barr PM, Furman RR, Kipps TJ, Cymbalista F, Pocock C, Thornton P, Caligaris-Cappio F, Robak T, Delgado J, Schuster SJ, Montillo M, Schuh A, de Vos S, Gill D, Bloor A, Dearden C, Moreno C, Jones JJ, Chu AD, Fardis M, McGreivy J, Clow F, James DF, Hillmen P. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23.PubMedPubMedCentralCrossRefGoogle Scholar
- 51.Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P, Bairey O, Hillmen P, Bartlett NL, Li J, Simpson D, Grosicki S, Devereux S, McCarthy H, Coutre S, Quach H, Gaidano G, Maslyak Z, Stevens DA, Janssens A, Offner F, Mayer J, O'Dwyer M, Hellmann A, Schuh A, Siddiqi T, Polliack A, Tam CS, Suri D, Cheng M, Clow F, Styles L, James DF, Kipps TJ. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373(25):2425–37.PubMedPubMedCentralCrossRefGoogle Scholar
- 52.Witzig TE, Geyer SM, Ghobrial I, Inwards DJ, Fonseca R, Kurtin P, Ansell SM, Luyun R, Flynn PJ, Morton RF, Dakhil SR, Gross H, Kaufmann SH. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol. 2005;23(23):5347–56.PubMedCrossRefPubMedCentralGoogle Scholar
- 53.Ansell SM, Inwards DJ, Rowland KM Jr, Flynn PJ, Morton RF, Moore DF Jr, Kaufmann SH, Ghobrial I, Kurtin PJ, Maurer M, Allmer C, Witzig TE. Low-dose, single-agent temsirolimus for relapsed mantle cell lymphoma: a phase 2 trial in the North Central Cancer treatment group. Cancer. 2008;113(3):508–14.PubMedPubMedCentralCrossRefGoogle Scholar
- 54.Hess G, Herbrecht R, Romaguera J, Verhoef G, Crump M, Gisselbrecht C, Laurell A, Offner F, Strahs A, Berkenblit A, Hanushevsky O, Clancy J, Hewes B, Moore L, Coiffier B. Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2009;27(23):3822–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 55.Dreyling M, Jurczak W, Jerkeman M, Silva RS, Rusconi C, Trneny M, Offner F, Caballero D, Joao C, Witzens-Harig M, Hess G, Bence-Bruckler I, Cho SG, Bothos J, Goldberg JD, Enny C, Traina S, Balasubramanian S, Bandyopadhyay N, Sun S, Vermeulen J, Rizo A, Rule S. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lymphoma: an international, randomised, open-label, phase 3 study. Lancet. 2016;387(10020):770–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 56.Chu Y, Lee S, Shah T, Yin CH, Barth M, Miles RR, Ayello J, Morris E, Harrison L, van de Ven C, Galardy P, Goldman SC, Lim MS, Hermiston M, McAllister-Lucas LM, Giulino-Roth L, Perkins SL, Cairo MS. Ibrutinib significantly inhibited Bruton’s tyrosine kinase (BTK) phosphorylation, in-vitro proliferation and enhanced overall survival in a preclinical Burkitt lymphoma (BL) model Oncoimmunology, 2018. Published online: 11 Oct 2018.Google Scholar
- 57.Chen J, Kinoshita T, Sukbuntherng J, Chang BY, Elias L. Ibrutinib inhibits ERBB receptor tyrosine kinases and HER2-amplified breast Cancer Cell growth. Mol Cancer Ther. 2016;15(12):2835–44.PubMedCrossRefPubMedCentralGoogle Scholar
- 58.Barf T, Covey T, Izumi R, van de Kar B, Gulrajani M, van Lith B, van Hoek M, de Zwart E, Mittag D, Demont D, Verkaik S, Krantz F, Pearson PG, Ulrich R, Kaptein A. Acalabrutinib (ACP-196): a covalent Bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile. J Pharmacol Exp Ther. 2017;363(2):240–52.PubMedCrossRefPubMedCentralGoogle Scholar
- 59.Patel V, Balakrishnan K, Bibikova E, Ayres M, Keating MJ, Wierda WG, Gandhi V. Comparison of Acalabrutinib, a selective Bruton tyrosine kinase inhibitor, with Ibrutinib in chronic lymphocytic leukemia cells. Clin Cancer Res. 2017;23(14):3734–43.PubMedCrossRefPubMedCentralGoogle Scholar
- 60.Covey T, Barf T, Gulrajani M, Krantz F, Lith BV, Bibikova E, van de Kar B, Zwart ED, Hamdy A, Izumi R, Kaptein A. ACP-196: a novel covalent Bruton’s tyrosine kinase (Btk) inhibitor with improved selectivity and in vivo target coverage in chronic lymphocytic leukemia (CLL) patients. Cancer Res. 2015;75(15 Supplement):2596.Google Scholar
- 61.Byrd JC, Harrington B, O’Brien S, Jones JA, Schuh A, Devereux S, Chaves J, Wierda WG, Awan FT, Brown JR, Hillmen P, Stephens DM, Ghia P, Barrientos JC, Pagel JM, Woyach J, Johnson D, Huang J, Wang X, Kaptein A, Lannutti BJ, Covey T, Fardis M, McGreivy J, Hamdy A, Rothbaum W, Izumi R, Diacovo TG, Johnson AJ, Furman RR. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):323–32.PubMedCrossRefPubMedCentralGoogle Scholar
- 62.Wang M, Rule S, Zinzani PL, Goy A, Casasnovas O, Smith SD, Damaj G, Doorduijn J, Lamy T, Morschhauser F, Panizo C, Shah B, Davies A, Eek R, Dupuis J, Jacobsen E, Kater AP, Le Gouill S, Oberic L, Robak T, Covey T, Dua R, Hamdy A, Huang X, Izumi R, Patel P, Rothbaum W, Slatter JG, Jurczak W. Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial. Lancet. 2018;391(10121):659–67.PubMedCrossRefPubMedCentralGoogle Scholar
- 63.Yasuhiro T, Yoshizawa T, Daub H, Weber C, Narita M, Kawabata K. ONO-WG-307, a novel, potent and selective inhibitor of Bruton’s tyrosine kinase (Btk), results in sustained inhibition of the ERK, AKT and PKD signaling pathways. Cancer Res. 2012;72(suppl 8). Abstract 2021Google Scholar
- 64.Kozaki R, Hutchinson C, Sandrine J, Dyer MJS. Kinome reprogramming in DLBCL by the BTKspecific inhibitor ONO4059 highlights synergistic combinations for clinical application. Haematologica. 2014;99(S1):137–8.Google Scholar
- 65.Kozaki R, Yoshizawa T, Tohda S, Yasuhiro T, Hotta S, Ariza Y, Ueda Y, Narita M, Kawabata K. Development of a bruton’s tyrosine kinase (btk) inhibitor, ONOWG307: efficacy in ABCDLBCL xenograft model potential treatment for Bcell malignancies. Blood. 2011;118(21):3731.Google Scholar
- 66.Walter HS, Rule SA, Dyer MJ, Karlin L, Jones C, Cazin B, Quittet P, Shah N, Hutchinson CV, Honda H, Duffy K, Birkett J, Jamieson V, Courtenay-Luck N, Yoshizawa T, Sharpe J, Ohno T, Abe S, Nishimura A, Cartron G, Morschhauser F, Fegan C, Salles G. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood. 2016;127(4):411–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 67.Tam C, Grigg AP, Opat S, Ku M, Gilbertson M, Anderson MA, Seymour JF, Ritchie DS, Dicorleto C, Dimovski B, Hedrick E, Yang J, Wang L, Luo L, Xue L, Roberts AW. The BTK inhibitor, Bgb-3111, is safe, tolerable, and highly active in patients with relapsed/ refractory B-cell malignancies: initial report of a phase 1 first-in-human trial. Blood. 2015;126(23):832.Google Scholar
- 68.Li N, Sun Z, Liu Y, Guo M, Zhang Y, Zhou D, Zhang B, Su D, Zhang S, Han J, Gao Y, Guo Y, Wang Z, Wei M, Luo L, Wang L. BGB-3111 is a novel and highly selective Bruton’s tyrosine kinase (BTK) inhibitor. Cancer Res. 2015;75(15):2597.CrossRefGoogle Scholar
- 69.Zhang SQ, Smith SM, Zhang SY, Lynn Wang Y. Mechanisms of ibrutinib resistance in chronic lymphocytic leukaemia and non-Hodgkin lymphoma. Br J Haematol. 2015;170(4):445–56.PubMedCrossRefPubMedCentralGoogle Scholar
- 70.Maddocks KJ, Ruppert AS, Lozanski G, Heerema NA, Zhao W, Abruzzo L, Lozanski A, Davis M, Gordon A, Smith LL, Mantel R, Jones JA, Flynn JM, Jaglowski SM, Andritsos LA, Awan F, Blum KA, Grever MR, Johnson AJ, Byrd JC, Woyach JA. Etiology of Ibrutinib therapy discontinuation and outcomes in patients with chronic lymphocytic leukemia. JAMA Oncol. 2015;1(1):80–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 71.Komarova NL, Burger JA, Wodarz D. Evolution of ibrutinib resistance in chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci USA. 2014;111(38):13906–11.PubMedCrossRefPubMedCentralGoogle Scholar
- 72.Woyach JA, Furman RR, Liu TM, Ozer HG, Zapatka M, Ruppert AS, Xue L, Li DH, Steggerda SM, Versele M, Dave SS, Zhang J, Yilmaz AS, Jaglowski SM, Blum KA, Lozanski A, Lozanski G, James DF, Barrientos JC, Lichter P, Stilgenbauer S, Buggy JJ, Chang BY, Johnson AJ, Byrd JC. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370(24):2286–94.PubMedPubMedCentralCrossRefGoogle Scholar
- 73.Albitar A, Ma W, De Dios I, Estrella J, Farooqui M, Wiestner A, Albitar M. High sensitivity testing shows multiclonal mutations in patients with CLL treated with BTK inhibitor and lack of mutations in Ibrutinib-naive patients. Blood. 2015;126:716.Google Scholar
- 74.Cheng S, Guo A, Lu P, Ma J, Coleman M, Wang YL. Functional characterization of BTK(C481S) mutation that confers ibrutinib resistance: exploration of alternative kinase inhibitors. Leukemia. 2015;29(4):895–900.PubMedCrossRefPubMedCentralGoogle Scholar
- 75.Furman RR, Cheng S, Lu P, Setty M, Perez AR, Guo A, Racchumi J, Xu G, Wu H, Ma J, Steggerda SM, Coleman M, Leslie C, Wang YL. Ibrutinib resistance in chronic lymphocytic leukemia. N Engl J Med. 2014;370(24):2352–4.PubMedPubMedCentralCrossRefGoogle Scholar
- 76.Sharma S, Galanina N, Guo A, Lee J, Kadri S, Van Slambrouck C, Long B, Wang W, Ming M, Furtado LV, Segal JP, Stock W, Venkataraman G, Tang WJ, Lu P, Wang YL. Identification of a structurally novel BTK mutation that drives ibrutinib resistance in CLL. Oncotarget. 2016;7(42):68833–41.PubMedPubMedCentralCrossRefGoogle Scholar
- 77.Fama R, Bomben R, Rasi S, Dal Bo M, Ciardullo C, Monti S, Rossi F, D'Agaro T, Zucchetto A, Gattei V, Gaidano G, Rossi D. Ibrutinib-naive chronic lymphocytic leukemia lacks Bruton tyrosine kinase mutations associated with treatment resistance. Blood. 2014;124(25):3831–3.PubMedCrossRefPubMedCentralGoogle Scholar
- 78.Lenz G, Balasubramanian S, Goldberg J, Rizo A, Schaffer M, Phelps C, Rule S, Dreyling MH. Sequence variants in patients with primary and acquired resistance to ibrutinib in the phase 3 MCL3001 (RAY) trial. J Clin Oncol. 2016;34(15_suppl):7570.CrossRefGoogle Scholar
- 79.Alvarado Y, Giles FJ, Swords RT. The PIM kinases in hematological cancers. Expert Rev Hematol. 2012;5(1):81–96.PubMedCrossRefPubMedCentralGoogle Scholar
- 80.Kuo HP, Ezell SA, Hsieh S, Schweighofer KJ, Cheung LW, Wu S, Apatira M, Sirisawad M, Eckert K, Liang Y, Hsu J, Chen CT, Beaupre D, Chang BY. The role of PIM1 in the ibrutinib-resistant ABC subtype of diffuse large B-cell lymphoma. Am J Cancer Res. 2016;6(11):2489–501.PubMedPubMedCentralGoogle Scholar
- 81.Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Sheehy P, Manning RJ, Patterson CJ, Tripsas C, Arcaini L, Pinkus GS, Rodig SJ, Sohani AR, Harris NL, Laramie JM, Skifter DA, Lincoln SE, Hunter ZR. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367(9):826–33.PubMedCrossRefPubMedCentralGoogle Scholar
- 82.Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Manning RJ, Tripsas C, Patterson CJ, Sheehy P, Treon SP. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123(11):1637–46.PubMedCrossRefPubMedCentralGoogle Scholar
- 83.Xu L, Tsakmaklis N, Yang G, Chen JG, Liu X, Demos M, Kofides A, Patterson CJ, Meid K, Gustine J, Dubeau T, Palomba ML, Advani R, Castillo JJ, Furman RR, Hunter ZR, Treon SP. Acquired mutations associated with ibrutinib resistance in Waldenstrom macroglobulinemia. Blood. 2017;129(18):2519–25.PubMedCrossRefPubMedCentralGoogle Scholar
- 84.Treon SP, Xu L, Hunter Z. MYD88 mutations and response to Ibrutinib in Waldenstrom’s Macroglobulinemia. N Engl J Med. 2015;373(6):584–6.PubMedCrossRefPubMedCentralGoogle Scholar
- 85.Cao Y, Hunter ZR, Liu X, Xu L, Yang G, Chen J, Patterson CJ, Tsakmaklis N, Kanan S, Rodig S, Castillo JJ, Treon SP. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s Macroglobulinemia. Leukemia. 2015;29(1):169–76.PubMedCrossRefPubMedCentralGoogle Scholar
- 86.Dimopoulos MA, Trotman J, Tedeschi A, Matous JV, Macdonald D, Tam C, Tournilhac O, Ma S, Oriol A, Heffner LT, Shustik C, Garcia-Sanz R, Cornell RF, de Larrea CF, Castillo JJ, Granell M, Kyrtsonis MC, Leblond V, Symeonidis A, Kastritis E, Singh P, Li J, Graef T, Bilotti E, Treon S, Buske C. Ibrutinib for patients with rituximab-refractory Waldenstrom’s macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol. 2017;18(2):241–50.PubMedCrossRefPubMedCentralGoogle Scholar
- 87.Wu C, de Miranda NF, Chen L, Wasik AM, Mansouri L, Jurczak W, Galazka K, Dlugosz-Danecka M, Machaczka M, Zhang H, Peng R, Morin RD, Rosenquist R, Sander B, Pan-Hammarstrom Q. Genetic heterogeneity in primary and relapsed mantle cell lymphomas: impact of recurrent CARD11 mutations. Oncotarget. 2016;7(25):38180–90.PubMedPubMedCentralGoogle Scholar
- 88.Zhang L, Nomie K, Zhang S, Liu Y, Guo H, Huang S, Wang J, Lopez E, Zhang H, Lorence EA, Merolle M, Balaji S, Ahmed M, Jiang C, Wang L, Wang M. Molecular pathways associated with Ibrutinib resistance in mantle Cell Lymphoma. Blood. 2017;130:2738.Google Scholar
- 89.Burger JA, Landau DA, Taylor-Weiner A, Bozic I, Zhang H, Sarosiek K, Wang L, Stewart C, Fan J, Hoellenriegel J, Sivina M, Dubuc AM, Fraser C, Han Y, Li S, Livak KJ, Zou L, Wan Y, Konoplev S, Sougnez C, Brown JR, Abruzzo LV, Carter SL, Keating MJ, Davids MS, Wierda WG, Cibulskis K, Zenz T, Werner L, Dal Cin P, Kharchencko P, Neuberg D, Kantarjian H, Lander E, Gabriel S, O'Brien S, Letai A, Weitz DA, Nowak MA, Getz G, Wu CJ. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun. 2016;7:11589.PubMedPubMedCentralCrossRefGoogle Scholar
- 90.Kadri S, Lee J, Fitzpatrick C, Galanina N, Sukhanova M, Venkataraman G, Sharma S, Long B, Petras K, Theissen M, Ming M, Kobzev Y, Kang W, Guo A, Wang W, Niu N, Weiner H, Thirman M, Stock W, Smith SM, Nabhan C, Segal JP, Lu P, Wang YL. Clonal evolution underlying leukemia progression and Richter transformation in patients with ibrutinib-relapsed CLL. Blood Adv. 2017;1(12):715–27.PubMedPubMedCentralCrossRefGoogle Scholar
- 91.Thompson PA, O’Brien SM, Wierda WG, Ferrajoli A, Stingo F, Smith SC, Burger JA, Estrov Z, Jain N, Kantarjian HM, Keating MJ. Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer. 2015;121(20):3612–21.PubMedPubMedCentralCrossRefGoogle Scholar
- 92.Moyo TK, Wilson CS, Moore DJ, Eischen CM. Myc enhances B-cell receptor signaling in precancerous B cells and confers resistance to Btk inhibition. Oncogene. 2017;36(32):4653–61.PubMedPubMedCentralCrossRefGoogle Scholar
- 93.Rubio-Moscardo F, Blesa D, Mestre C, Siebert R, Balasas T, Benito A, Rosenwald A, Climent J, Martinez JI, Schilhabel M, Karran EL, Gesk S, Esteller M. Characterization of 8p21.3 chromosomal deletions in B-cell lymphoma: TRAIL-R1 and TRAIL-R2 as candidate dosage-dependent tumor suppressor genes. Blood. 2005;106(9):3214–22.PubMedCrossRefPubMedCentralGoogle Scholar
- 94.Rinaldi A, Mian M, Kwee I, Rossi D, Deambrogi C, Mensah AA, Forconi F, Spina V, Cencini E, Drandi D, Ladetto M, Santachiara R, Marasca R, Gattei V, Cavalli F, Zucca E, Gaidano G, Bertoni F. Genome-wide DNA profiling better defines the prognosis of chronic lymphocytic leukaemia. Br J Haematol. 2011;154(5):590–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 95.Chapiro E, Leporrier N, Radford-Weiss I, Bastard C, Mossafa H, Leroux D, Tigaud I, De Braekeleer M, Terre C, Brizard F, Callet-Bauchu E, Struski S, Veronese L, Fert-Ferrer S, Taviaux S, Lesty C, Davi F, Merle-Beral H, Bernard OA, Sutton L, Raynaud SD, Nguyen-Khac F. Gain of the short arm of chromosome 2 (2p) is a frequent recurring chromosome aberration in untreated chronic lymphocytic leukemia (CLL) at advanced stages. Leuk Res. 2010;34(1):63–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 96.Turner JG, Dawson J, Sullivan DM. Nuclear export of proteins and drug resistance in cancer. Biochem Pharmacol. 2012;83(8):1021–32.PubMedCrossRefPubMedCentralGoogle Scholar
- 97.Blum KA. B-cell receptor pathway modulators in NHL. Hematology Am Soc Hematol Educ Program. 2015;2015:82–91.PubMedPubMedCentralCrossRefGoogle Scholar
- 98.Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132(3):344–62.PubMedCrossRefPubMedCentralGoogle Scholar
- 99.Cildir G, Low KC, Tergaonkar V. Noncanonical NF-kappaB signaling in health and disease. Trends Mol Med. 2016;22(5):414–29.PubMedCrossRefPubMedCentralGoogle Scholar
- 100.Rahal R, Frick M, Romero R, Korn JM, Kridel R, Chan FC, Meissner B, Bhang HE, Ruddy D, Kauffmann A, Farsidjani A, Derti A, Rakiec D, Naylor T, Pfister E, Kovats S, Kim S, Dietze K, Dorken B, Steidl C, Tzankov A, Hummel M, Monahan J, Morrissey MP, Fritsch C, Sellers WR, Cooke VG, Gascoyne RD, Lenz G, Stegmeier F. Pharmacological and genomic profiling identifies NF-kappaB-targeted treatment strategies for mantle cell lymphoma. Nat Med. 2014;20(1):87–92.PubMedCrossRefPubMedCentralGoogle Scholar
- 101.Werner M, Hobeika E, Jumaa H. Role of PI3K in the generation and survival of B cells. Immunol Rev. 2010;237(1):55–71.PubMedCrossRefPubMedCentralGoogle Scholar
- 102.Chiron D, Di Liberto M, Martin P, Huang X, Sharman J, Blecua P, Mathew S, Vijay P, Eng K, Ali S, Johnson A, Chang B, Ely S, Elemento O, Mason CE, Leonard JP, Chen-Kiang S. Cell-cycle reprogramming for PI3K inhibition overrides a relapse-specific C481S BTK mutation revealed by longitudinal functional genomics in mantle cell lymphoma. Cancer Discov. 2014;4(9):1022–35.PubMedPubMedCentralCrossRefGoogle Scholar
- 103.Ma J, Lu P, Guo A, Cheng S, Zong H, Martin P, Coleman M, Wang YL. Characterization of ibrutinib-sensitive and -resistant mantle lymphoma cells. Br J Haematol. 2014;166(6):849–61.PubMedCrossRefPubMedCentralGoogle Scholar
- 104.Zhang L, Nomie K, Zhang S, Liu Y, Guo H, Huang S, Jeffrey Wang J, Lopez E, Zhang H, Lorence EA, Merolle M, Balaji S, Ahmed M, Jiang C, Wang L, Wang M. Molecular pathways associated with Ibrutinib resistance in mantle Cell Lymphoma. Blood. 2017;130:2738.Google Scholar
- 105.Jain N, Sehgal L, Shuttleworth SJ, Samaniego F. Targeting PI3 pathway in ibrutinib resistant diffuse large B cell lymphoma. Cancer Res. 2017;77(13 Supplement)Google Scholar
- 106.Paulus A, Akhtar S, Yousaf H, Manna A, Paulus SM, Bashir Y, Caulfield TR, Kuranz-Blake M, Chitta K, Wang X, Asmann Y, Hudec R, Springer W, Ailawadhi S, Chanan-Khan A. Waldenstrom macroglobulinemia cells devoid of BTK(C481S) or CXCR4(WHIM-like) mutations acquire resistance to ibrutinib through upregulation of Bcl-2 and AKT resulting in vulnerability towards venetoclax or MK2206 treatment. Blood Cancer J. 2017;7(5):e565.PubMedPubMedCentralCrossRefGoogle Scholar
- 107.Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science. 1984;226(4678):1097–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 108.Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 2017;16(4):273–84.PubMedCrossRefPubMedCentralGoogle Scholar
- 109.Deng J, Isik E, Fernandes SM, Brown JR, Letai A, Davids MS. Bruton’s tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia. Leukemia. 2017;31(10):2075–84.PubMedPubMedCentralCrossRefGoogle Scholar
- 110.Brocco F, Burg HT, Fernandes S, Tam CS, Forconi F, Guerra RM, Bird G, Walensky LD, Brown JR, Kater AP, Eldering E. Dissecting the role of individual Bcl-2 members in response and resistance to Ibrutinib or Venetoclax in CLL. Blood. 2017;130:262.Google Scholar
- 111.Kuo H-P, Crowley R, Xue L, Schweighofer KJ, Cheung LW, Hsieh S, Eckert K, Versele M, Chang BY. Combination of Ibrutinib and BCL-2 or SYK inhibitors in Ibrutinib resistant ABC-subtype of diffuse large B-Cell lymphoma. Blood. 2014;124:505.Google Scholar
- 112.Stacey DW. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr Opin Cell Biol. 2003;15(2):158–63.PubMedCrossRefPubMedCentralGoogle Scholar
- 113.Bea S, Valdes-Mas R, Navarro A, Salaverria I, Martin-Garcia D, Jares P, Gine E, Pinyol M, Royo C, Nadeu F, Conde L, Juan M, Clot G, Vizan P, Di Croce L, Puente DA, Lopez-Guerra M, Moros A, Roue G, Aymerich M, Villamor N, Colomo L, Martinez A, Valera A, Martin-Subero JI, Amador V, Hernandez L, Rozman M, Enjuanes A, Forcada P, Muntanola A, Hartmann EM, Calasanz MJ, Rosenwald A, Ott G, Hernandez-Rivas JM, Klapper W, Siebert R, Wiestner A, Wilson WH, Colomer D, Lopez-Guillermo A, Lopez-Otin C, Puente XS, Campo E. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci USA. 2013;110(45):18250–5.PubMedCrossRefPubMedCentralGoogle Scholar
- 114.Mohanty A, Sandoval N, Das M, Pillai R, Chen L, Chen RW, Amin HM, Wang M, Marcucci G, Weisenburger DD, Rosen ST, Pham LV, Ngo VN. CCND1 mutations increase protein stability and promote ibrutinib resistance in mantle cell lymphoma. Oncotarget. 2016;7(45):73558–72.PubMedPubMedCentralCrossRefGoogle Scholar
- 115.Son B, Lee S, Youn H, Kim E, Kim W, Youn B. The role of tumor microenvironment in therapeutic resistance. Oncotarget. 2017;8(3):3933–45.PubMedCrossRefPubMedCentralGoogle Scholar
- 116.Saba NS, Liu D, Herman SE, Underbayev C, Tian X, Behrend D, Weniger MA, Skarzynski M, Gyamfi J, Fontan L, Melnick A, Grant C, Roschewski M, Navarro A, Bea S, Pittaluga S, Dunleavy K, Wilson WH, Wiestner A. Pathogenic role of B-cell receptor signaling and canonical NF-kappaB activation in mantle cell lymphoma. Blood. 2016;128(1):82–92.PubMedPubMedCentralCrossRefGoogle Scholar
- 117.Zhao X, Lwin T, Silva A, Shah B, Tao J, Fang B, Zhang L, Fu K, Bi C, Li J, Jiang H, Meads MB, Jacobson T, Silva M, Distler A, Darville L, Han Y, Rebatchouk D, Di Liberto M, Moscinski LC, Koomen JM, Dalton WS, Shain KH, Wang M, Sotomayor E. Unification of de novo and acquired ibrutinib resistance in mantle cell lymphoma. Nat Commun. 2017;8:14920.PubMedPubMedCentralCrossRefGoogle Scholar
- 118.Byrd JC, Smith S, Wagner-Johnston N, Sharman J, Chen AI, Advani R, Augustson B, Marlton P, Renee Commerford S, Okrah K, Liu L, Murray E, Penuel E, Ward AF, Flinn IW. First-in-human phase 1 study of the BTK inhibitor GDC-0853 in relapsed or refractory B-cell NHL and CLL. Oncotarget. 2018;9(16):13023–35.PubMedPubMedCentralCrossRefGoogle Scholar
- 119.Fabian CA, Reiff SD, Guinn D, Neuman L, Fox JA, Wilson W, Byrd JC, Woyach JA, Johnson AJ. SNS-062 demonstrates efficacy in chronic lymphocytic leukemia in vitro and inhibits C481S mutated Bruton tyrosine kinase. Cancer Res. 2017;77(13 supplement):1207.Google Scholar
- 120.Johnson AR, Kohli PB, Katewa A, Gogol E, Belmont LD, Choy R, Penuel E, Burton L, Eigenbrot C, Yu C, Ortwine DF, Bowman K, Franke Y, Tam C, Estevez A, Mortara K, Wu J, Li H, Lin M, Bergeron P, Crawford JJ, Young WB. Battling Btk mutants with noncovalent inhibitors that overcome Cys481 and Thr474 mutations. ACS Chem Biol. 2016;11(10):2897–907.PubMedCrossRefPubMedCentralGoogle Scholar
- 121.Reiff SD, Guinn D, Mantel R, Smith L, Cheney C, Johnson AJ. Evaluation of the novel Bruton’s tyrosine kinase (BTK) inhibitor GDC-0853 in chronic lymphocytic leukemia (CLL) with wild type or C481S mutated BTK. J Clin Oncol. 2016;34(15 supplement):7530.CrossRefGoogle Scholar
- 122.Paul J, Soujon M, Wengner AM, Zitzmann-Kolbe S, Sturz A, Haike K, Keng Magdalene KH, Tan SH, Lange M, Tan SY, Mumberg D, Lim ST, Ziegelbauer K, Liu N. Simultaneous inhibition of PI3Kdelta and PI3Kalpha induces ABC-DLBCL regression by blocking BCR-dependent and -independent activation of NF-kappaB and AKT. Cancer Cell. 2017;31(1):64–78.PubMedCrossRefPubMedCentralGoogle Scholar
- 123.Scuoppo C, Jiguang W, Persaud M, Mittan S, Pasqualucci L, Rabadan R, Grandori C, Dalla-Favera R. Repurposing Dasatinib for Ibrutinib-resistant diffuse large B-cell lymphoma. Blood. 2017;130:3843.Google Scholar
- 124.Jones R, Axelrod MJ, Tumas D, Quéva C, Julie Di Paolo J. Combination effects of B cell receptor pathway inhibitors (Entospletinib, ONO/GS-4059, and Idelalisib) and a BCL-2 inhibitor in primary CLL cells. Blood. 2015;126(23):1749.Google Scholar
- 125.Morschhauser F, Danilov AV, Hodson DJ, Salles GA, Starodub A, Mitra S, Yang Y, Walter H, Fegan C. Preliminary results of A phase 1B study of Tirabrutinib (GS-4059/ONO-4059) in combination with entospletinib in patients with B-cell malignancies. Hematol Oncol. 2017;35(S2)CrossRefGoogle Scholar
- 126.Niemann CU, Mora-Jensen HI, Dadashian EL, Krantz F, Covey T, Chen SS, Chiorazzi N, Izumi R, Ulrich R, Lannutti BJ, Wiestner A, Herman SEM. Combined BTK and PI3Kdelta inhibition with Acalabrutinib and ACP-319 improves survival and tumor control in CLL mouse model. Clin Cancer Res. 2017;23(19):5814–23.PubMedPubMedCentralCrossRefGoogle Scholar
- 127.Pike KG, Malagu K, Hummersone MG, Menear KA, Duggan HM, Gomez S, Martin NM, Ruston L, Pass SL, Pass M. Optimization of potent and selective dual mTORC1 and mTORC2 inhibitors: the discovery of AZD8055 and AZD2014. Bioorg Med Chem Lett. 2013;23(5):1212–6.PubMedCrossRefPubMedCentralGoogle Scholar
- 128.Ezell SA, Mayo M, Bihani T, Tepsuporn S, Wang S, Passino M, Grosskurth SE, Collins M, Parmentier J, Reimer C, Byth KF. Synergistic induction of apoptosis by combination of BTK and dual mTORC1/2 inhibitors in diffuse large B cell lymphoma. Oncotarget. 2014;5(13):4990–5001.PubMedPubMedCentralCrossRefGoogle Scholar
- 129.Yahiaoui A, Meadows SA, Sorensen RA, Cui ZH, Keegan KS, Brockett R, Chen G, Queva C, Li L, Tannheimer SL. PI3Kdelta inhibitor idelalisib in combination with BTK inhibitor ONO/GS-4059 in diffuse large B cell lymphoma with acquired resistance to PI3Kdelta and BTK inhibitors. PLoS One. 2017;12(2):e0171221.PubMedPubMedCentralCrossRefGoogle Scholar
- 130.Platanias LC. Map kinase signaling pathways and hematologic malignancies. Blood. 2003;101(12):4667–79.PubMedCrossRefPubMedCentralGoogle Scholar
- 131.Zhao Y, Adjei AA. The clinical development of MEK inhibitors. Nat Rev Clin Oncol. 2014;11(7):385–400.PubMedCrossRefPubMedCentralGoogle Scholar
- 132.Chen JG, Liu X, Munshi M, Xu L, Tsakmaklis N, Demos MG, Kofides A, Guerrera ML, Chan GG, Patterson CJ, Meid K, Gustine J, Dubeau T, Severns P, Castillo JJ, Hunter ZR, Wang J, Buhrlage SJ, Gray NS, Treon SP, Yang G. BTK(Cys481Ser) drives ibrutinib resistance via ERK1/2 and protects BTK(wild-type) MYD88-mutated cells by a paracrine mechanism. Blood. 2018;131(18):2047–59.PubMedCrossRefPubMedCentralGoogle Scholar
- 133.Ding N, Li X, Shi Y, Ping L, Wu L, Fu K, Feng L, Zheng X, Song Y, Pan Z, Zhu J. Irreversible dual inhibitory mode: the novel Btk inhibitor PLS-123 demonstrates promising anti-tumor activity in human B-cell lymphoma. Oncotarget. 2015;6(17):15122–36.PubMedPubMedCentralGoogle Scholar
- 134.Wu H, Hu C, Wang A, Weisberg EL, Chen Y, Yun CH, Wang W, Liu Y, Liu X, Tian B, Wang J, Zhao Z, Liang Y, Li B, Wang L, Wang B, Chen C, Buhrlage SJ, Qi Z, Zou F, Nonami A, Li Y, Fernandes SM, Adamia S, Stone RM, Galinsky IA, Wang X, Yang G, Griffin JD, Brown JR, Eck MJ, Liu J, Gray NS, Liu Q. Discovery of a BTK/MNK dual inhibitor for lymphoma and leukemia. Leukemia. 2016;30(1):173–81.PubMedCrossRefPubMedCentralGoogle Scholar
- 135.Alfaro J, Perez de Arce F, Belmar S, Fuentealba G, Avila P, Ureta G, Flores C, Acuna C, Delgado L, Gaete D, Pujala B, Barde A, Nayak AK, Upendra TVR, Patel D, Chauhan S, Sharma VK, Kanno S, Almirez RG, Hung DT, Chakravarty S, Rai R, Bernales S, Quinn KP, Pham SM, McCullagh E. Dual inhibition of Bruton’s Tyrosine Kinase and Phosphoinositide-3-Kinase p110delta as a therapeutic approach to treat non-Hodgkin’s B cell malignancies. J Pharmacol Exp Ther. 2017;361(2):312–21.PubMedCrossRefPubMedCentralGoogle Scholar
- 136.Ge Y, Wang C, Song S, Huang J, Liu Z, Li Y, Meng Q, Zhang J, Yao J, Liu K, Ma X, Sun X. Identification of highly potent BTK and JAK3 dual inhibitors with improved activity for the treatment of B-cell lymphoma. Eur J Med Chem. 2018;143:1847–57.PubMedCrossRefPubMedCentralGoogle Scholar
- 137.Davids MS. Targeting BCL-2 in B-cell lymphomas. Blood. 2017;130(9):1081–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 138.Zhao X, Bodo J, Sun D, Durkin L, Lin J, Smith MR, Hsi ED. Combination of ibrutinib with ABT-199: synergistic effects on proliferation inhibition and apoptosis in mantle cell lymphoma cells through perturbation of BTK, AKT and BCL2 pathways. Br J Haematol. 2015;168(5):765–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 139.Tam CS, Anderson MA, Pott C, Agarwal R, Handunnetti S, Hicks RJ, Burbury K, Turner G, Di Iulio J, Bressel M, Westerman D, Lade S, Dreyling M, Dawson SJ, Dawson MA, Seymour JF, Roberts AW. Ibrutinib plus Venetoclax for the treatment of mantle-cell lymphoma. N Engl J Med. 2018;378(13):1211–23.PubMedCrossRefPubMedCentralGoogle Scholar
- 140.Kuo HP, Ezell SA, Schweighofer KJ, Cheung LWK, Hsieh S, Apatira M, Sirisawad M, Eckert K, Hsu SJ, Chen CT, Beaupre DM, Versele M, Chang BY. Combination of Ibrutinib and ABT-199 in diffuse large B-cell lymphoma and follicular lymphoma. Mol Cancer Ther. 2017;16(7):1246–56.PubMedCrossRefPubMedCentralGoogle Scholar
- 141.Burger JA, Keating MJ, Wierda WG, Hartmann E, Hoellenriegel J, Rosin NY, de Weerdt I, Jeyakumar G, Ferrajoli A, Cardenas-Turanzas M, Lerner S, Jorgensen JL, Nogueras-Gonzalez GM, Zacharian G, Huang X, Kantarjian H, Garg N, Rosenwald A, O'Brien S. Safety and activity of ibrutinib plus rituximab for patients with high-risk chronic lymphocytic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 2014;15(10):1090–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 142.Wang ML, Lee H, Chuang H, Wagner-Bartak N, Hagemeister F, Westin J, Fayad L, Samaniego F, Turturro F, Oki Y, Chen W, Badillo M, Nomie K, DeLa Rosa M, Zhao D, Lam L, Addison A, Zhang H, Young KH, Li S, Santos D, Medeiros LJ, Champlin R, Romaguera J, Zhang L. Ibrutinib in combination with rituximab in relapsed or refractory mantle cell lymphoma: a single-Centre, open-label, phase 2 trial. Lancet Oncol. 2016;17(1):48–56.PubMedCrossRefPubMedCentralGoogle Scholar
- 143.Fowler N, Nastoupil L, de Vos S, Knapp M, Flinn IW, Chen R, Advani RH, Bhatia S, Martin P, Mena R, Suzuki S, Beaupre DM, Neuenburg JK, Palomba ML. Ibrutinib plus rituximab in treatment-naive Patients with follicular Lymphoma: results from a multicenter, phase 2 study. Blood. 2015;126:470.Google Scholar
- 144.Fowler NH, Coleman M, Stevens DA, Smith SM, Venugopal P, Martin P, Phillips TJ, Agajanian R, Stephens DM, Izumi R, Cheung J, Slatter JG, Yin M, Hiremath M, Hunder NNH, Christian B, Acalabrutinib alone or in combination with rituximab (R) in follicular lymphoma (FL). J Clin Oncol, 2018. 36(suppl; abstr 7549).Google Scholar
- 145.Younes A, Thieblemont C, Morschhauser F, Flinn I, Friedberg JW, Amorim S, Hivert B, Westin J, Vermeulen J, Bandyopadhyay N, de Vries R, Balasubramanian S, Hellemans P, Smit JW, Fourneau N, Oki Y. Combination of ibrutinib with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) for treatment-naive patients with CD20-positive B-cell non-Hodgkin lymphoma: a non-randomised, phase 1b study. Lancet Oncol. 2014;15(9):1019–26.PubMedCrossRefPubMedCentralGoogle Scholar
- 146.Maddocks K, Christian B, Jaglowski S, Flynn J, Jones JA, Porcu P, Wei L, Jenkins C, Lozanski G, Byrd JC, Blum KA. A phase 1/1b study of rituximab, bendamustine, and ibrutinib in patients with untreated and relapsed/refractory non-Hodgkin lymphoma. Blood. 2015;125(2):242–8.CrossRefGoogle Scholar
- 147.Chanan-Khan A, Cramer P, Demirkan F, Fraser G, Silva RS, Grosicki S, Pristupa A, Janssens A, Mayer J, Bartlett NL, Dilhuydy MS, Pylypenko H, Loscertales J, Avigdor A, Rule S, Villa D, Samoilova O, Panagiotidis P, Goy A, Mato A, Pavlovsky MA, Karlsson C, Mahler M, Salman M, Sun S, Phelps C, Balasubramanian S, Howes A, Hallek M. Ibrutinib combined with bendamustine and rituximab compared with placebo, bendamustine, and rituximab for previously treated chronic lymphocytic leukaemia or small lymphocytic lymphoma (HELIOS): a randomised, double-blind, phase 3 study. Lancet Oncol. 2016;17(2):200–11.PubMedCrossRefPubMedCentralGoogle Scholar
- 148.Wilson WH, Young RM, Schmitz R, Yang Y, Pittaluga S, Wright G, Lih CJ, Williams PM, Shaffer AL, Gerecitano J, de Vos S, Goy A, Kenkre VP, Barr PM, Blum KA, Shustov A, Advani R, Fowler NH, Vose JM, Elstrom RL, Habermann TM, Barrientos JC, McGreivy J, Fardis M, Chang BY, Clow F, Munneke B, Moussa D, Beaupre DM, Staudt LM. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat Med. 2015;21(8):922–6.PubMedCrossRefPubMedCentralGoogle Scholar
- 149.Yasuhiro T, Sawada W, Klein C, Kozaki R, Hotta S, Yoshizawa T. Anti-tumor efficacy study of the Bruton’s tyrosine kinase (BTK) inhibitor, ONO/GS-4059, in combination with the glycoengineered type II anti-CD20 monoclonal antibody obinutuzumab (GA101) demonstrates superior in vivo efficacy compared to ONO/GS-4059 in combination with rituximab. Leuk Lymphoma. 2017;58(3):699–707.PubMedCrossRefPubMedCentralGoogle Scholar
- 150.Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33.PubMedPubMedCentralCrossRefGoogle Scholar
- 151.Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, Timmerman JM, Stiff PJ, Friedberg JW, Flinn IW, Goy A, Hill BT, Smith MR, Deol A, Farooq U, McSweeney P, Munoz J, Avivi I, Castro JE, Westin JR, Chavez JC, Ghobadi A, Komanduri KV, Levy R, Jacobsen ED, Witzig TE, Reagan P, Bot A, Rossi J, Navale L, Jiang Y, Aycock J, Elias M, Chang D, Wiezorek J, Go WY. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44.PubMedPubMedCentralCrossRefGoogle Scholar
- 152.Ruella M, Kenderian SS, Shestova O, Fraietta JA, Qayyum S, Zhang Q, Maus MV, Liu X, Nunez-Cruz S, Klichinsky M, Kawalekar OU, Milone M, Lacey SF, Mato A, Schuster SJ, Kalos M, June CH, Gill S, Wasik MA. The addition of the BTK inhibitor Ibrutinib to anti-CD19 chimeric antigen receptor T cells (CART19) improves responses against mantle cell lymphoma. Clin Cancer Res. 2016;22(11):2684–96.PubMedCrossRefPubMedCentralGoogle Scholar
- 153.Turtle CJ, Hay KA, Hanafi LA, Li D, Cherian S, Chen X, Wood B, Lozanski A, Byrd JC, Heimfeld S, Riddell SR, Maloney DG. Durable molecular remissions in chronic lymphocytic Leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of Ibrutinib. J Clin Oncol. 2017;35(26):3010–20.PubMedPubMedCentralCrossRefGoogle Scholar
- 154.Dubovsky JA, Beckwith KA, Natarajan G, Woyach JA, Jaglowski S, Zhong Y, Hessler JD, Liu T-M, Chang BY, Larkin KM, Stefanovski MR, Chappell DL, Frissora FW, Smith LL, Smucker KA, Flynn JM, Jones JA, Andritsos LA, Maddocks K, Lehman AM, Furman R, Sharman J, Mishra A, Caligiuri MA, Satoskar AR, Buggy JJ, Muthusamy N, Johnson AJ, Byrd JC. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122(15):2539–49.PubMedPubMedCentralCrossRefGoogle Scholar
- 155.Robinson HR, Qi J, Cook EM, Nichols C, Dadashian EL, Underbayev C, Herman SEM, Saba NS, Keyvanfar K, Sun C, Ahn IE, Baskar S, Rader C, Wiestner A. A CD19/CD3 bispecific antibody for effective immunotherapy of chronic lymphocytic leukemia in the ibrutinib era. Blood. 2018;132:521–32.PubMedPubMedCentralCrossRefGoogle Scholar
- 156.Sahakian E, Rock-Klotz J, Shah BD, Powers J, Cultrera JL, Deng S, Woods DM, Nguyen M, Cheng F, Wang H, Perez-Villarroel P, Lienlaf M, Knox T, Chen-Kiang S, Villagra A, Tao J, Pinilla-Ibarz J, Jones SS, Sotomayor EM. Combination of ACY1215, a selective histone Deacetylase 6 (HDAC6) inhibitor with the Bruton tyrosine kinase (BTK) inhibitor, Ibrutinib, represents a novel therapeutic strategy in mantle cell lymphoma (MCL). Blood. 2012;120:1660.Google Scholar
- 157.Mondello P, Brea EJ, De Stanchina E, Toska E, Chang AY, Fennell M, Seshan V, Garippa R, Scheinberg DA, Baselga J, Wendel HG, Younes A. Panobinostat acts synergistically with ibrutinib in diffuse large B cell lymphoma cells with MyD88 L265 mutations. JCI Insight. 2017;2(6):e90196.PubMedPubMedCentralCrossRefGoogle Scholar
- 158.Restelli V, Lupi M, Vagni M, Chila R, Bertoni F, Damia G, Carrassa L. Combining Ibrutinib with Chk1 inhibitors synergistically targets mantle Cell Lymphoma Cell lines. Target Oncol. 2018;13(2):235–45.PubMedCrossRefPubMedCentralGoogle Scholar
- 159.Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE. Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov. 2011;10(1):29–46.PubMedCrossRefPubMedCentralGoogle Scholar
- 160.Dasmahapatra G, Patel H, Dent P, Fisher RI, Friedberg J, Grant S. The Bruton tyrosine kinase (BTK) inhibitor PCI-32765 synergistically increases proteasome inhibitor activity in diffuse large-B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) cells sensitive or resistant to bortezomib. Br J Haematol. 2013;161(1):43–56.PubMedPubMedCentralCrossRefGoogle Scholar
- 161.Axelrod M, Ou Z, Brett LK, Zhang L, Lopez ER, Tamayo AT, Gordon V, Ford RJ, Williams ME, Pham LV, Weber MJ, Wang ML. Combinatorial drug screening identifies synergistic co-targeting of Bruton’s tyrosine kinase and the proteasome in mantle cell lymphoma. Leukemia. 2014;28(2):407–10.PubMedCrossRefPubMedCentralGoogle Scholar
- 162.Trepel J, Mollapour M, Giaccone G, Neckers L. Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer. 2010;10(8):537–49.PubMedCrossRefPubMedCentralGoogle Scholar
- 163.Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol. 2006;18(5):516–23.PubMedCrossRefPubMedCentralGoogle Scholar
- 164.Rudelius M, Rosenfeldt MT, Leich E, Rauert-Wunderlich H, Solimando AG, Beilhack A, Ott G, Rosenwald A. Inhibition of focal adhesion kinase overcomes resistance of mantle cell lymphoma to ibrutinib in the bone marrow microenvironment. Haematologica. 2018;103(1):116–25.PubMedPubMedCentralCrossRefGoogle Scholar
- 165.Byrd JC, Harrington B, O’Brien S, Jones JA, Schuh A, Devereux S, Chaves J, Wierda WG, Awan FT, Brown JR, Hillmen P, Stephens DM, Ghia P, Barrientos JC, Pagel JM, Woyach J, Johnson D, Huang J, Wang X, Kaptein A, Lannutti BJ, Covey T, Fardis M, McGreivy J, Hamdy A, Rothbaum W, Izumi R, Diacovo TG, Johnson AJ, Furman RR. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):323–32.PubMedCrossRefPubMedCentralGoogle Scholar
- 166.Cosson A, Chapiro E, Bougacha N, Lambert J, Herbi L, Cung HA, Algrin C, Keren B, Damm F, Gabillaud C, Brunelle-Navas MN, Davi F, Merle-Beral H, Le Garff-Tavernier M, Roos-Weil D, Choquet S, Uzunov M, Morel V, Leblond V, Maloum K, Lepretre S, Feugier P, Lesty C, Lejeune J, Sutton L, Landesman Y, Susin SA, Nguyen-Khac F. Gain in the short arm of chromosome 2 (2p+) induces gene overexpression and drug resistance in chronic lymphocytic leukemia: analysis of the central role of XPO1. Leukemia. 2017;31(7):1625–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 167.Li J, Wang X, Xie Y, Ying Z, Liu W, Ping L, Zhang C, Pan Z, Ding N, Song Y, Zhu J. The mTOR kinase inhibitor everolimus synergistically enhances the anti-tumor effect of the Bruton’s tyrosine kinase (BTK) inhibitor PLS-123 on mantle cell lymphoma. Int J Cancer. 2018;142(1):202–13.PubMedCrossRefPubMedCentralGoogle Scholar
- 168.Gaudio E, Tarantelli C, Kwee I, Barassi C, Bernasconi E, Rinaldi A, Ponzoni M, Cascione L, Targa A, Stathis A, Goodstal S, Zucca E, Bertoni F. Combination of the MEK inhibitor pimasertib with BTK or PI3K-delta inhibitors is active in preclinical models of aggressive lymphomas. Ann Oncol. 2016;27(6):1123–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 169.Patel VK, Lamothe B, Ayres ML, Gay J, Cheung JP, Balakrishnan K, Ivan C, Morse J, Nelson M, Keating MJ, Wierda WG, Marszalek JR, Gandhi V. Pharmacodynamics and proteomic analysis of acalabrutinib therapy: similarity of on-target effects to ibrutinib and rationale for combination therapy. Leukemia. 2018;32(4):920–30.PubMedCrossRefPubMedCentralGoogle Scholar