Skip to main content

Multi-task Deep Reinforcement Learning with Evolutionary Algorithm and Policy Gradients Method in 3D Control Tasks

  • Chapter
  • First Online:
Big Data, Cloud Computing, and Data Science Engineering (BCD 2019)

Abstract

In deep reinforcement learning, it is difficult to converge when the exploration is insufficient or a reward is sparse. Besides, on specific tasks, the amount of exploration may be limited. Therefore, it is considered effective to learn on source tasks that were previously for promoting learning on the target tasks. Existing researches have proposed pretraining methods for learning parameters that enable fast learning on multiple tasks. However, these methods are still limited by several problems, such as sparse reward, deviation of samples, dependence on initial parameters. In this research, we propose a pretraining method to train a model that can work well on variety of target tasks and solve the above problems with an evolutionary algorithm and policy gradients method. In this method, agents explore multiple environments with a diverse set of neural networks to train a general model with evolutionary algorithm and policy gradients method. In the experiments, we assume multiple 3D control source tasks. After the model training with our method on the source tasks, we show how effective the model is for the 3D control tasks of the target tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrychowicz, M., Baker, B., Chociej, M., Józefowicz, R., McGrew, B., Pachocki, J.W., Petron, A., Plappert, M., Powell, G., Ray, A., Schneider, J., Sidor, S., Tobin, J., Welinder, P., Weng, L., Zaremba, W.: Learning dexterous in-hand manipulation. CoRR arXiv:1808.00177 (2018)

  2. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: an evaluation platform for general agents. CoRR arXiv:1207.4708 (2012)

  3. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: OpenAI gym. CoRR arXiv:1606.01540 (2016)

  4. Coumans, E., Bai, Y.: Pybullet, a python module for physics simulation for games, robotics and machine learning (2016–2019). http://pybullet.org

  5. Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P.: Benchmarking deep reinforcement learning for continuous control. CoRR arXiv:1604.06778 (2016)

  6. Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I., Legg, S., Kavukcuoglu, K.: IMPALA: scalable distributed deep-RL with importance weighted actor-learner architectures. CoRR arXiv:1802.01561 (2018)

  7. Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A.A., Pritzel, A., Wierstra, D.: Pathnet: evolution channels gradient descent in super neural networks. CoRR arXiv:1701.08734 (2017)

  8. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 70, pp. 1126–1135. PMLR, International Convention Centre, Sydney, Australia (2017). http://proceedings.mlr.press/v70/finn17a.html

  9. Floreano, D., Durr, P., Mattiussi, C.: Neuroevolution: from architectures to learning (2008)

    Article  Google Scholar 

  10. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3, 128–135 (1999)

    Article  Google Scholar 

  11. Fujimoto, S., van Hoof, H., Meger, D.: Addressing function approximation error in actor-critic methods. CoRR arXiv:1802.09477 (2018)

  12. Hasselt, H.V.: In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 23, pp. 2613–2621. Curran Associates, Inc. (2010). http://papers.nips.cc/paper/3964-double-q-learning.pdf

  13. Hasselt, H.V., Guez, A., Silver, D.: Deep reinforcement learning with double Q-learning. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pp. 2094–2100. AAAI Press (2016). http://dl.acm.org/citation.cfm?id=3016100.3016191

  14. Hausknecht, M., Lehman, J., Miikkulainen, R., Stone, P.: A neuroevolution approach to general atari game playing. IEEE Trans. Comput. Intell. AI Games (2013). http://nn.cs.utexas.edu/?hausknecht:tciaig14

  15. Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep reinforcement learning that matters. CoRR arXiv:1709.06560 (2017)

  16. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS Deep Learning and Representation Learning Workshop. arXiv:1503.02531 (2015)

  17. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989). https://doi.org/10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  18. James, S., Wohlhart, P., Kalakrishnan, M., Kalashnikov, D., Irpan, A., Ibarz, J., Levine, S., Hadsell, R., Bousmalis, K.: Sim-to-real via sim-to-sim: data-efficient robotic grasping via randomized-to-canonical adaptation networks. CoRR arXiv:1812.07252 (2018)

  19. Kapturowski, S., Ostrovski, G., Dabney, W., Quan, J., Munos, R.: Recurrent experience replay in distributed reinforcement learning. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=r1lyTjAqYX

  20. Khadka, S., Tumer, K.: Evolution-guided policy gradient in reinforcement learning. In: Bengio, S., Wallach, H., Larochelle,H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 1196–1208. Curran Associates, Inc. (2018). http://papers.nips.cc/paper/7395-evolution-guided-policy-gradient-in-reinforcement-learning.pdf

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR arXiv:1412.6980 (2014)

  22. Kolen, J.F., Pollack, J.B.: Back propagation is sensitive to initial conditions. In: Proceedings of the 1990 Conference on Advances in Neural Information Processing Systems 3, NIPS-3, pp. 860–867. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1990). http://dl.acm.org/citation.cfm?id=118850.119960

  23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

  24. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor policies. J. Mach. Learn. Res. 17(39), 1–40 (2016). http://jmlr.org/papers/v17/15-522.html

  25. Levine, S., Pastor, P., Krizhevsky, A., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. CoRR arXiv:1603.02199 (2016)

  26. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning. CoRR arXiv:1509.02971 (2015)

  27. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement learning. In: NIPS Deep Learning Workshop (2013)

    Google Scholar 

  28. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236

    Article  Google Scholar 

  29. Pieter-Tjerk, Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005). https://doi.org/10.1007/s10479-005-5724-z

    Article  MathSciNet  Google Scholar 

  30. Pourchot, Sigaud: CEM-RL: combining evolutionary and gradient-based methods for policy search. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=BkeU5j0ctQ

  31. Salimans, T., Ho, J., Chen, X., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. CoRR arXiv:1703.03864 (2017)

  32. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. CoRR arXiv:1511.05952 (2016)

  33. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016). https://doi.org/10.1038/nature16961

    Article  Google Scholar 

  34. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deterministic policy gradient algorithms. In: Xing, E.P., Jebara, T. (eds.) Proceedings of the 31st International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 32, pp. 387–395. PMLR, Bejing, China (2014). http://proceedings.mlr.press/v32/silver14.html

  35. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002). https://doi.org/10.1162/106365602320169811

    Article  Google Scholar 

  36. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT Press, Cambridge, MA, USA (1998)

    MATH  Google Scholar 

  37. Teh, Y., Bapst, V., Czarnecki, W.M., Quan, J., Kirkpatrick, J., Hadsell, R., Heess, N., Pascanu, R.: Distral: robust multitask reinforcement learning. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 4496–4506. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7036-distral-robust-multitask-reinforcement-learning.pdf

  38. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992). https://doi.org/10.1007/BF00992698

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by JSPS KAKENHI Grant Numbers 16K00419, 16K12411, 17H04705, 18H03229, 18H03340.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shota Imai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Imai, S., Sei, Y., Tahara, Y., Orihara, R., Ohsuga, A. (2020). Multi-task Deep Reinforcement Learning with Evolutionary Algorithm and Policy Gradients Method in 3D Control Tasks. In: Lee, R. (eds) Big Data, Cloud Computing, and Data Science Engineering. BCD 2019. Studies in Computational Intelligence, vol 844. Springer, Cham. https://doi.org/10.1007/978-3-030-24405-7_2

Download citation

Publish with us

Policies and ethics