Skip to main content

Robust Optimization Model for Designing Emerging Cloud-Fog Networks

  • Chapter
  • First Online:
Book cover Big Data, Cloud Computing, and Data Science Engineering (BCD 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 844))

Abstract

I focus on designing the placement and capacity for Internet of Things (IoT) infrastructures consisting of three layers; cloud, fog, and communication. It is extremely difficult to predict the future demand of innovative IoT services; thus, I propose a robust design model for economically constructing IoT infrastructures under uncertain demands, which is formulated as a robust optimization problem. I also present a method of solving this problem, which is practically difficult to solve. I experimentally evaluated the effectiveness of the proposed model and the possibility of applying the method to this model to practical scaled networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abedin, S.F., Alam, M.G.R., Tran, N.H., Hong, C.S.: A fog based system model for cooperative IoT node pairing using matching theory. In: The 17th Asia-Pacific Network Operations and Management Symposium (APNOMS)

    Google Scholar 

  2. Arakawa, S., Sakano, T., Tukishima, Y., Hasegawa, H., Tsuritani, T., Hirota, Y., Tode, H.: Topological characteristic of Japan photonic network model. IEICE Tech. Rep. 113(91), 7–12 (2013) (in Japanese)

    Google Scholar 

  3. Bauschert, T., Bsing, C., D’Andreagiovanni, F., Koster, A.C.A., Kutschka, M., Steglich, U.: Network planning under demand uncertainty with robust optimization. IEEE Commun. Mag. 52(2), 178–185 (2014)

    Article  Google Scholar 

  4. Ben-tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Progr. 88, 411–424 (2000)

    Article  MathSciNet  Google Scholar 

  5. Ben-tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2009)

    Google Scholar 

  6. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

    Article  MathSciNet  Google Scholar 

  7. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16. ACM (2012)

    Google Scholar 

  8. Chandra, B., Takahashi, S., Oki, E.: Network congestion minimization models based on robust optimization. IEICE Trans. Commun. E101.B(3), 772–784 (2018)

    Article  Google Scholar 

  9. Coniglio, S., Koster, A., Tieves, M.: Data uncertainty in virtual network embedding: robust optimization and protection levels. J. Netw. Syst. Manag. 24(3), 681–710 (2016)

    Article  Google Scholar 

  10. Evans, D.: The internet of things: how the next evolution of the internet is changing everything. CISCO White Paper (2011)

    Google Scholar 

  11. Ghosh, R., Simmhan, Y.: Distributed scheduling of event analytics across edge and cloud. ACM TCPS | ACM Trans. Cyberphysical Syst. 2(4), 1–28 (2018)

    Article  Google Scholar 

  12. Griva, I., Nash, S.G., Sofer, A.: Linear and Nonlinear Optimization. Society for Industrial and Applied Mathematics, 2nd edn. (2009)

    Google Scholar 

  13. http://www.gurobi.com

  14. Information and Communication in Japan. Ministry of Internal Affairs and Communication, Japan (2017)

    Google Scholar 

  15. Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hlzle, U., Stuart, S., Vahdat, A.: B4: experience with a globally-deployed software defined WAN. ACM Spec. Interes. Group Data Commun. (SIGCOMM) 2013, 3–14 (2013)

    Google Scholar 

  16. Kamiyama, N., Takahashi, Y., Ishibashi, K., Shiomoto, K., Otoshi, T., Ohsita, Y., Murata, M.: Optimizing cache location and route on CDN using model predictive control. In: The 27th International Teletraffic Congress (ITC), pp. 37–45 (2015)

    Google Scholar 

  17. Magnanti, T.L., Wong, R.T.: Network design and transportation planning: models and algorithms. Transp. Sci. 18(1), 1–55 (1984)

    Article  Google Scholar 

  18. Mukherjee, M., Shu, L., Member, S., Wang, D.: Survey of fog computing: fundamental, network applications, and research challenges. IEEE Commun. Surv. Tutor. 20(3), 1826–1857 (2018)

    Article  Google Scholar 

  19. Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R.H., Morrow, M.J., Polakos, P.A.: A comprehensive survey on fog computing: state-of-the-art and research challenges. IEEE Commun. Surv. Tutor. 20(1), 416–464 (2018)

    Article  Google Scholar 

  20. Nielsen’s law of internet bandwidth. http://www.nngroup.com/articles/law-of-bandwidth/

  21. Nishio, T., Shinkuma, R., Takahashi, T., Mandayam, N.B.: Service-oriented heterogeneous resource sharing for optimizing service latency in mobile cloud. In: Proceedings of the First International Workshop on Mobile Cloud Computing & Networking (MobileCloud ’13), pp. 19–26 (2013)

    Google Scholar 

  22. Oueis, J., Strinati, E.C., Sardellitti, S., Barbarossa, S.: Small cell clustering for efficient distributed fog computing: a multi-user case. In: The 82nd Vehicular Technology Conference (VTC2015-Fall), pp. 1–5 (2015)

    Google Scholar 

  23. Perera, C., Harold, C., Member, L., Jayawardena, S.: The emerging internet of things marketplace from an industrial perspective: a survey. IEEE Trans. Emerg. Top. Comput. 3(4), 585–598

    Article  Google Scholar 

  24. Pióro, M., Medhi, D.: Routing, Flow, and Capacity Design in Communication and Computer Networks. Morgan Kaufmann, San Francisco (2004)

    Chapter  Google Scholar 

  25. Shabanzadeh, M., Sheikh-El-Eslami, M.K., Haghifam, M.R.: The design of a risk-hedging tool for virtual power plants via robust optimization approach. Appl. Energy 155, 766–777 (2015)

    Article  Google Scholar 

  26. Souza, V.B.C., Ramrez, W., Masip-Bruin, X., Marn-Tordera, E., Ren, G., Tashakor, G.: Handling service allocation in combined fog-cloud scenarios. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–5 (2016)

    Google Scholar 

  27. Takeshita, K., Shiozu, H., Tsujino, M., Hasegawa, H.: An optimal server-allocation method with network design problem. In: Proceedings of the 2010 IEICE Society Conference, vol. 2010, issue 2, p. 93 (2010) (in Japanese)

    Google Scholar 

  28. Taneja, M., Davy, A.: Resource aware placement of IoT application modules in fog-cloud computing paradigm. In: 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 1222–1228 (2017)

    Google Scholar 

  29. Ttnc, R.H., Koenig, M.: Robust asset allocation. Ann. Oper. Res. 132(1–4), 157–187 (2000)

    MathSciNet  Google Scholar 

  30. Wang, H., Xie, H., Qiu, L., Yang, Y.R., Zhang, Y., Greenberg, A.: COPE: traffic engineering in dynamic networks. ACM Spec. Interes. Group Data Commun. (SIGCOMM) 2006, 99–110 (2006)

    Google Scholar 

  31. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  32. Yang, P., Zhang, N., Bi, Y., Yu, L., Shen, X.S.: Catalyzing cloud-fog interoperation in 5G wireless networks: an SDN approach. IEEE Netw. 31(5), 14–21 (2017)

    Article  Google Scholar 

  33. Yu, C.S., Li, H.L.: A robust optimization model for stochastic logistic problems. Int. J. Prod. Econ. 64(1–3), 385–397 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Tsujino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsujino, M. (2020). Robust Optimization Model for Designing Emerging Cloud-Fog Networks. In: Lee, R. (eds) Big Data, Cloud Computing, and Data Science Engineering. BCD 2019. Studies in Computational Intelligence, vol 844. Springer, Cham. https://doi.org/10.1007/978-3-030-24405-7_1

Download citation

Publish with us

Policies and ethics