Advertisement

Physics Objects Reconstruction with the ATLAS Detector

  • Stefano ManzoniEmail author
Chapter
  • 122 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter the ATLAS reconstruction process of the main physical objects used in the analyses presented in this manuscript are summarized. Section 6.1 describes in detail the reconstruction of the electrons and photons starting from the information collected in the EM calorimeter and in the tracker. Moreover, in Sect. 6.1.4 a more recent approach to reconstruct energy deposits in the ATLAS EM calorimeter is presented. Finally, Sects. 6.26.3 and 6.4 the muon, jet and missing transverse energy reconstruction scheme and performance are briefly described.

References

  1. 1.
    ATLAS Collaboration (2011) Expected electron performance in the ATLAS experiment. Technical report ATL-PHYS-PUB-2011-006, CERN, Geneva, April, 2011Google Scholar
  2. 2.
    ATLAS Collaboration (2011) Expected photon performance in the ATLAS experiment. Technical report, CERN, 2011. https://cds.cern.ch/record/1345329
  3. 3.
    Lampl W, Laplace S, Lelas D, Loch P, Ma H, Menke S, Rajagopalan S, Rousseau D, Snyder S, Unal G. Calorimeter clustering algorithms: description and performance. https://cds.cern.ch/record/1099735
  4. 4.
    ATLAS Collaboration (2019) Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton-proton collision data at \(\sqrt{s}\) = 13 TeV, submitted to: Eur Phys J. arXiv:1902.04655 [physics.ins-det]
  5. 5.
    ATLAS Collaboration (2017) Electron efficiency measurements with the ATLAS detector using 2012 LHC proton-proton collision data. Eur Phys J C 77(3):195.  https://doi.org/10.1140/epjc/s10052-017-4756-2, arXiv:1612.01456 [hep-ex]
  6. 6.
    Cornelissen T, Elsing M, Fleischmann S, Liebig W, Moyse E, Salzburger A (2007) Concepts, design and implementation of the ATLAS new tracking (NEWT). Technical report ATL-SOFT-PUB-2007-007. ATL-COM-SOFT-2007-002, CERN, Geneva, March, 2007. https://cds.cern.ch/record/1020106
  7. 7.
    Fruhwirth R (1987) Application of Kalman filtering to track and vertex fitting. Nucl Instrum Methods A 262:444–450. http://dx.doi.org/10.1016/0168-9002(87)90887-4ADSCrossRefGoogle Scholar
  8. 8.
    Cornelissen TG, Elsing M, Gavrilenko I, Laporte JF, Liebig W, Limper M, Nikolopoulos K, Poppleton A, Salzburger A (2008) The global chi**2 track fitter in ATLAS. J Phys Conf Ser 119:032013. http://dx.doi.org/10.1088/1742-6596/119/3/032013
  9. 9.
    ATLAS Collaboration (2012) Improved electron reconstruction in ATLAS using the Gaussian Sum Filter-based model for bremsstrahlung. Technical report ATLAS-CONF-2012-047, CERN, Geneva, May, 2012Google Scholar
  10. 10.
    ATLAS Collaboration (2016) Electron efficiency measurements with the ATLAS detector using the 2015 LHC proton–proton collision data. ATLAS-CONF-2016-024, 2016. https://cds.cern.ch/record/2157687
  11. 11.
    ATLAS Collaboration (2016) Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data. Eur Phys J C 76(12):666. http://dx.doi.org/10.1140/epjc/s10052-016-4507-9, arXiv:1606.01813 [hep-ex]
  12. 12.
    ATLAS Collaboration (2019) Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016. Eur Phys J C 79(3):205. http://dx.doi.org/10.1140/epjc/s10052-019-6650-6, arXiv:1810.05087 [hep-ex]
  13. 13.
  14. 14.
    ATLAS Collaboration (2017) Electron and photon reconstruction and performance in ATLAS using a dynamical, topological cell clustering-based approach. Technical report ATL-PHYS-PUB-2017-022, CERN, Geneva, December, 2017. https://cds.cern.ch/record/2298955
  15. 15.
    ATLAS Collaboration (2017) Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1. Eur Phys J C 77:490. arXiv:1603.02934 [hep-ex] http://dx.doi.org/10.1140/epjc/s10052-017-5004-5
  16. 16.
    ATLAS Collaboration (2016) Muon reconstruction performance of the ATLAS detector in proton–proton collision data at \(\sqrt{s} =\) 13 TeV. Eur Phys J C 76(5):292. http://dx.doi.org/10.1140/epjc/s10052-016-4120-y, arXiv:1603.05598 [hep-ex]
  17. 17.
    Cacciari M, Salam G, Soyez G (2008) The anti-k\(_t\) jet clustering algorithm. JHEP 04:063. http://dx.doi.org/10.1088/1126-6708/2008/04/063, arXiv:0802.1189 [hep-ph]
  18. 18.
    ATLAS Collaboration (2017) Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector. Phys Rev D 96(7):072002. http://dx.doi.org/10.1103/PhysRevD.96.072002, arXiv:1703.09665 [hep-ex]
  19. 19.
    ATLAS Collaboration (2013) Pile-up subtraction and suppression for jets in ATLAS. ATLAS-CONF-2013-083, 2013. https://cds.cern.ch/record/1570994
  20. 20.
    ATLAS Collaboration (2015) Jet calibration and systematic uncertainties for jets reconstructed in the ATLAS detector at \(\sqrt{s}=13\) TeV. Technical report. ATL-PHYS-PUB-2015-015, CERN, Geneva, July, 2015. https://cds.cern.ch/record/2037613
  21. 21.
    ATLAS Collaboration (2014) Tagging and suppression of pileup jets with the ATLAS detector. ATLAS-CONF-2014-018, 2014. https://cds.cern.ch/record/1700870
  22. 22.
    ATLAS Collaboration (2017) Performance of algorithms that reconstruct missing transverse momentum in \(\sqrt{s}=\) 8 TeV proton-proton collisions in the ATLAS detector. Eur Phys J C 77(4):241.  https://doi.org/10.1140/epjc/s10052-017-4780-2, arXiv:1609.09324 [hep-ex]
  23. 23.
    ATLAS Collaboration (2018) Performance of missing transverse momentum reconstruction with the ATLAS detector using proton-proton collisions at \(\sqrt{s}\) = 13 TeV. Eur Phys J C 78(11):903. http://dx.doi.org/10.1140/epjc/s10052-018-6288-9, arXiv:1802.08168 [hep-ex]
  24. 24.
    ATLAS Collaboration (2018) \(E_{\text{T}}^{\text{ miss }}\) performance in the ATLAS detector using 2015–2016 LHC \(pp\) collisions. ATLAS-CONF-2018-023, 2018. https://cds.cern.ch/record/2625233

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Nikhef—National Institute for Subatomic Physics (NL)AmsterdamThe Netherlands

Personalised recommendations