Advertisement

Supersymmetry

  • Stefano ManzoniEmail author
Chapter
  • 112 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, a particular Beyond Standard Model (BSM) theory, known as Supersymmetry (SUSY), is introduced. Supersymmetry provides the principal motivation for the analysis described in Chap.  10, which looks for final states containing two photons and large missing transverse momentum (see Sect.  6.4).

References

  1. 1.
    Martin SP (1998) A supersymmetry primer. arXiv:hep-ph/9709356 [hep-ph]. [Adv Ser Direct High Energy Phys 18:1 (1998)]
  2. 2.
    Terning J (2006) Modern supersymmetry: dynamics and duality. Oxford University Press, Oxford.  https://doi.org/10.1093/acprof:oso/9780198567639.001.0001
  3. 3.
  4. 4.
    Planck Collaboration, Ade PAR et al (2016) Planck 2015 results. XIII cosmological parameters. Astron Astrophys 594:A13.  https://doi.org/10.1051/0004-6361/201525830, arXiv:1502.01589 [astro-ph.CO]
  5. 5.
    Golfand YA, Likhtman EP (1971) Extension of the algebra of poincare group generators and violation of p invariance. JETP Lett 13:323–326ADSGoogle Scholar
  6. 6.
    Neveu A, Schwarz JH (1971) Factorizable dual model of pions. Nucl Phys B 31:86–112.  https://doi.org/10.1016/0550-3213(71)90448-2ADSCrossRefGoogle Scholar
  7. 7.
    Neveu A, Schwarz JH (1971) Quark model of dual pions. Phys Rev D 4:1109–1111.  https://doi.org/10.1103/PhysRevD.4.1109ADSCrossRefGoogle Scholar
  8. 8.
    Ramond P (1971) Dual theory for free fermions. Phys Rev D 3:2415–2418.  https://doi.org/10.1103/PhysRevD.3.2415ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Volkov DV, Akulov VP (1973) Is the neutrino a goldstone particle? Phys Lett B 46:109–110.  https://doi.org/10.1016/0370-2693(73)90490-5ADSCrossRefGoogle Scholar
  10. 10.
    Wess J, Zumino B (1974) A Lagrangian model invariant under supergauge transformations. Phys Lett B 49:52.  https://doi.org/10.1016/0370-2693(74)90578-4ADSCrossRefGoogle Scholar
  11. 11.
    Wess J, Zumino B (1974) Supergauge transformations in four-dimensions. Nucl Phys B 70:39–50.  https://doi.org/10.1016/0550-3213(74)90355-1ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Haag R, Lopuszanski JT, Sohnius M (1975) All possible generators of supersymmetries of the S matrix. Nucl Phys B 88:257.  https://doi.org/10.1016/0550-3213(75)90279-5ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Coleman SR, Mandula J (1967) All possible symmetries of the S matrix. Phys Rev 159:1251–1256.  https://doi.org/10.1103/PhysRev.159.1251ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Super-Kamiokande Collaboration, Abe K et al (2017) Search for proton decay via \(p \rightarrow e^+\pi ^0\) and \(p \rightarrow \mu ^+\pi ^0\) in 0.31 megaton years exposure of the Super-Kamiokande water Cherenkov detector. Phys Rev D 95(1):012004.  https://doi.org/10.1103/PhysRevD.95.012004, arXiv:1610.03597 [hep-ex]
  15. 15.
    Girardello L, Grisaru MT (1982) Soft breaking of supersymmetry. Nucl Phys B 194:65.  https://doi.org/10.1016/0550-3213(82)90512-0ADSCrossRefGoogle Scholar
  16. 16.
    Draper P, Rzehak H (2016) A review of Higgs mass calculations in supersymmetric models. Phys Rep 619:1–24.  https://doi.org/10.1016/j.physrep.2016.01.001, arXiv:1601.01890 [hep-ph]ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
  18. 18.
    Alvarez-Gaume L, Claudson M, Wise M (1982) Low-energy supersymmetry. Nucl Phys B 207:96ADSCrossRefGoogle Scholar
  19. 19.
    Dine M, Fischler W, Srednicki M (1981) Supersymmetric technicolor. Nucl Phys B 189:575.  https://doi.org/10.1016/0550-3213(81)90582-4ADSCrossRefGoogle Scholar
  20. 20.
    Dimopoulos S, Raby S (1981) Supercolor. Nucl Phys B 192:353.  https://doi.org/10.1016/0550-3213(81)90430-2ADSCrossRefGoogle Scholar
  21. 21.
    Nappi CR, Ovrut BA (1982) Supersymmetric extension of the SU(3)\(\times \)SU(2)\(\times \)U(1) model. Phys Lett B 113:175.  https://doi.org/10.1016/0370-2693(82)90418-XADSCrossRefGoogle Scholar
  22. 22.
    Dine M, Nelson A (1993) Dynamical supersymmetry breaking at low-energies. Phys Rev D 48:1277. arXiv:hep-ph/9303230ADSCrossRefGoogle Scholar
  23. 23.
    Dine M, Nelson A, Shirman Y (1995) Low-energy dynamical supersymmetry breaking simplified. Phys Rev D 51:1362. arXiv:hep-ph/9408384ADSCrossRefGoogle Scholar
  24. 24.
    Dine M, Nelson A, Nir Y, Shirman Y (1996) New tools for low-energy dynamical supersymmetry breaking. Phys Rev D 53:2658. arXiv:hep-ph/9507378ADSCrossRefGoogle Scholar
  25. 25.
    Alonso F, Dova MT (2016) Búsqueda de Supersimetría en eventos con un fotón, jets y energía faltante con el detector ATLAS. PhD thesis, Universidad Nacional de La Plata, Feb 2016. https://cds.cern.ch/record/2147473. Accessed 28 Mar 2016
  26. 26.
    ATLAS Collaboration (2014) Search for nonpointing and delayed photons in the diphoton and missing transverse momentum final state in 8 TeV \(pp\) collisions at the LHC using the ATLAS detector. Phys Rev D 90(11):112005.  https://doi.org/10.1103/PhysRevD.90.112005, arXiv:1409.5542 [hep-ex]
  27. 27.
    ATLAS Collaboration (2015) Search for photonic signatures of gauge-mediated supersymmetry in 8 TeV \(pp\) collisions with the ATLAS detector. Phys Rev D 92:072001. arXiv:1507.05493 [hep-ex]
  28. 28.
    Collaboration CMS (2015) Search for supersymmetry with photons in pp collisions at \(\sqrt{s}\) = 8 TeV. Phys Rev D 92:072006. arXiv:1507.02898 [hep-ex]
  29. 29.
    Alwall J, Schuster P, Toro N (2009) Simplified models for a first characterization of new physics at the LHC. Phys Rev D 79:075020.  https://doi.org/10.1103/PhysRevD.79.075020, arXiv:0810.3921 [hep-ph]

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Nikhef—National Institute for Subatomic Physics (NL)AmsterdamThe Netherlands

Personalised recommendations