Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 196 Accesses

Abstract

In this chapter, a particular Beyond Standard Model (BSM) theory, known as Supersymmetry (SUSY), is introduced. Supersymmetry provides the principal motivation for the analysis described in Chap. 10, which looks for final states containing two photons and large missing transverse momentum (see Sect. 6.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dark matter is expected to be composed by relatively slow-moving particles compared to the speed of light (Cold Dark Matter, or CDM), and thus relativistic particle such as the neutrino cannot be a good dark matter candidate.

  2. 2.

    Since dark energy it is not referred as matter, 85% is given by the fraction of dark matter (27%) over the universe matter content (5 \(+\) 27%).

References

  1. Martin SP (1998) A supersymmetry primer. arXiv:hep-ph/9709356 [hep-ph]. [Adv Ser Direct High Energy Phys 18:1 (1998)]

  2. Terning J (2006) Modern supersymmetry: dynamics and duality. Oxford University Press, Oxford. https://doi.org/10.1093/acprof:oso/9780198567639.001.0001

  3. Lisanti M (2017) Lectures on dark matter physics, pp 399–446. https://doi.org/10.1142/9789813149441_0007, https://inspirehep.net/record/1427360/files/arXiv:1603.03797.pdf, arXiv:1603.03797 [hep-ph]

  4. Planck Collaboration, Ade PAR et al (2016) Planck 2015 results. XIII cosmological parameters. Astron Astrophys 594:A13. https://doi.org/10.1051/0004-6361/201525830, arXiv:1502.01589 [astro-ph.CO]

  5. Golfand YA, Likhtman EP (1971) Extension of the algebra of poincare group generators and violation of p invariance. JETP Lett 13:323–326

    ADS  Google Scholar 

  6. Neveu A, Schwarz JH (1971) Factorizable dual model of pions. Nucl Phys B 31:86–112. https://doi.org/10.1016/0550-3213(71)90448-2

    Article  ADS  Google Scholar 

  7. Neveu A, Schwarz JH (1971) Quark model of dual pions. Phys Rev D 4:1109–1111. https://doi.org/10.1103/PhysRevD.4.1109

    Article  ADS  Google Scholar 

  8. Ramond P (1971) Dual theory for free fermions. Phys Rev D 3:2415–2418. https://doi.org/10.1103/PhysRevD.3.2415

    Article  ADS  MathSciNet  Google Scholar 

  9. Volkov DV, Akulov VP (1973) Is the neutrino a goldstone particle? Phys Lett B 46:109–110. https://doi.org/10.1016/0370-2693(73)90490-5

    Article  ADS  Google Scholar 

  10. Wess J, Zumino B (1974) A Lagrangian model invariant under supergauge transformations. Phys Lett B 49:52. https://doi.org/10.1016/0370-2693(74)90578-4

    Article  ADS  Google Scholar 

  11. Wess J, Zumino B (1974) Supergauge transformations in four-dimensions. Nucl Phys B 70:39–50. https://doi.org/10.1016/0550-3213(74)90355-1

    Article  ADS  MathSciNet  Google Scholar 

  12. Haag R, Lopuszanski JT, Sohnius M (1975) All possible generators of supersymmetries of the S matrix. Nucl Phys B 88:257. https://doi.org/10.1016/0550-3213(75)90279-5

    Article  ADS  MathSciNet  Google Scholar 

  13. Coleman SR, Mandula J (1967) All possible symmetries of the S matrix. Phys Rev 159:1251–1256. https://doi.org/10.1103/PhysRev.159.1251

    Article  ADS  MATH  Google Scholar 

  14. Super-Kamiokande Collaboration, Abe K et al (2017) Search for proton decay via \(p \rightarrow e^+\pi ^0\) and \(p \rightarrow \mu ^+\pi ^0\) in 0.31 megaton years exposure of the Super-Kamiokande water Cherenkov detector. Phys Rev D 95(1):012004. https://doi.org/10.1103/PhysRevD.95.012004, arXiv:1610.03597 [hep-ex]

  15. Girardello L, Grisaru MT (1982) Soft breaking of supersymmetry. Nucl Phys B 194:65. https://doi.org/10.1016/0550-3213(82)90512-0

    Article  ADS  Google Scholar 

  16. Draper P, Rzehak H (2016) A review of Higgs mass calculations in supersymmetric models. Phys Rep 619:1–24. https://doi.org/10.1016/j.physrep.2016.01.001, arXiv:1601.01890 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  17. LHC SUSY Cross Section Working Group. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections

  18. Alvarez-Gaume L, Claudson M, Wise M (1982) Low-energy supersymmetry. Nucl Phys B 207:96

    Article  ADS  Google Scholar 

  19. Dine M, Fischler W, Srednicki M (1981) Supersymmetric technicolor. Nucl Phys B 189:575. https://doi.org/10.1016/0550-3213(81)90582-4

    Article  ADS  Google Scholar 

  20. Dimopoulos S, Raby S (1981) Supercolor. Nucl Phys B 192:353. https://doi.org/10.1016/0550-3213(81)90430-2

    Article  ADS  Google Scholar 

  21. Nappi CR, Ovrut BA (1982) Supersymmetric extension of the SU(3)\(\times \)SU(2)\(\times \)U(1) model. Phys Lett B 113:175. https://doi.org/10.1016/0370-2693(82)90418-X

    Article  ADS  Google Scholar 

  22. Dine M, Nelson A (1993) Dynamical supersymmetry breaking at low-energies. Phys Rev D 48:1277. arXiv:hep-ph/9303230

    Article  ADS  Google Scholar 

  23. Dine M, Nelson A, Shirman Y (1995) Low-energy dynamical supersymmetry breaking simplified. Phys Rev D 51:1362. arXiv:hep-ph/9408384

    Article  ADS  Google Scholar 

  24. Dine M, Nelson A, Nir Y, Shirman Y (1996) New tools for low-energy dynamical supersymmetry breaking. Phys Rev D 53:2658. arXiv:hep-ph/9507378

    Article  ADS  Google Scholar 

  25. Alonso F, Dova MT (2016) Búsqueda de Supersimetría en eventos con un fotón, jets y energía faltante con el detector ATLAS. PhD thesis, Universidad Nacional de La Plata, Feb 2016. https://cds.cern.ch/record/2147473. Accessed 28 Mar 2016

  26. ATLAS Collaboration (2014) Search for nonpointing and delayed photons in the diphoton and missing transverse momentum final state in 8 TeV \(pp\) collisions at the LHC using the ATLAS detector. Phys Rev D 90(11):112005. https://doi.org/10.1103/PhysRevD.90.112005, arXiv:1409.5542 [hep-ex]

  27. ATLAS Collaboration (2015) Search for photonic signatures of gauge-mediated supersymmetry in 8 TeV \(pp\) collisions with the ATLAS detector. Phys Rev D 92:072001. arXiv:1507.05493 [hep-ex]

  28. Collaboration CMS (2015) Search for supersymmetry with photons in pp collisions at \(\sqrt{s}\) = 8 TeV. Phys Rev D 92:072006. arXiv:1507.02898 [hep-ex]

  29. Alwall J, Schuster P, Toro N (2009) Simplified models for a first characterization of new physics at the LHC. Phys Rev D 79:075020. https://doi.org/10.1103/PhysRevD.79.075020, arXiv:0810.3921 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Manzoni .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manzoni, S. (2019). Supersymmetry. In: Physics with Photons Using the ATLAS Run 2 Data. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-24370-8_3

Download citation

Publish with us

Policies and ethics