Advertisement

The Standard Model and the Higgs Boson

  • Stefano ManzoniEmail author
Chapter
  • 109 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter I introduce the theoretical model and the main experimental results that are the reference framework for the analysis conducted during my three years of doctorate.

References

  1. 1.
    Weinberg S (2005) The quantum theory of fields. Vol. 1: foundations. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Weinberg S (2013) The quantum theory of fields. Vol. 2: modern applications. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Peskin ME, Schroeder DV (1995) An introduction to quantum field theory. Westview Press, BoulderGoogle Scholar
  4. 4.
    Mungo D, Carminati L, Turra R, Manzoni S (2018) Measurement of Higgs boson production cross sections in the diphoton decay channel with 80 fb\(^{-1}\) of pp collision data collected by the ATLAS detector. Master’s thesis, Università degli studi di MilanoGoogle Scholar
  5. 5.
    Noether E (1918) Invariante Variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918:235–257. http://eudml.org/doc/59024
  6. 6.
    Particle Data Group Collaboration, Patrignani C et al (2016) Rev Part Phys, Chin Phys C 40(10):100001.  https://doi.org/10.1088/1674-1137/40/10/100001CrossRefGoogle Scholar
  7. 7.
    Higgs PW (1964) Broken symmetries, massless particles and gauge fields. Phys Lett 12:132–133.  https://doi.org/10.1016/0031-9163(64)91136-9ADSCrossRefGoogle Scholar
  8. 8.
    Englert F, Brout R (1964) Broken symmetry and the mass of gauge vector mesons. Phys Rev Lett 13:321–323.  https://doi.org/10.1103/PhysRevLett.13.321ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Guralnik G, Hagen C, Kibble T (1964) Global conservation laws and massless particles. Phys Rev Lett 13:585–587.  https://doi.org/10.1103/PhysRevLett.13.585ADSCrossRefGoogle Scholar
  10. 10.
    Goldstone J, Salam A, Weinberg S (1962) Broken symmetries. Phys Rev 127:965–970.  https://doi.org/10.1103/PhysRev.127.965ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    MuLan Collaboration, Webber DM et al (2011) Measurement of the positive muon lifetime and determination of the Fermi constant to part-per-million precision. Phys Rev Lett 106:041803.  https://doi.org/10.1103/PhysRevLett.106.041803,  https://doi.org/10.1103/PhysRevLett.106.079901, arXiv:1010.0991 [hep-ex]
  12. 12.
    ATLAS Collaboration (2012) Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys Lett B 716:1–29.  https://doi.org/10.1016/j.physletb.2012.08.020, arXiv:1207.7214 [hep-ex]ADSCrossRefGoogle Scholar
  13. 13.
    CMS Collaboration (2012) Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys Lett B 716:30–61.  https://doi.org/10.1016/j.physletb.2012.08.021, arXiv:1207.7235 [hep-ex]ADSCrossRefGoogle Scholar
  14. 14.
    Djouadi A (2008) The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model. Phys Rep 457:1–216.  https://doi.org/10.1016/j.physrep.2007.10.004, arXiv:hep-ph/0503172 [hep-ph]ADSCrossRefGoogle Scholar
  15. 15.
    Lee BW, Quigg C, Thacker HB (1977) Weak interactions at very high-energies: the role of the Higgs boson mass. Phys Rev D 16:1519.  https://doi.org/10.1103/PhysRevD.16.1519ADSCrossRefGoogle Scholar
  16. 16.
    Lee BW, Quigg C, Thacker HB (1977) The strength of weak interactions at very high-energies and the Higgs boson mass. Phys Rev Lett 38:883–885.  https://doi.org/10.1103/PhysRevLett.38.883ADSCrossRefGoogle Scholar
  17. 17.
    Hambye T, Riesselmann K (1997) Matching conditions and Higgs mass upper bounds revisited. Phys Rev D 55:7255–7262.  https://doi.org/10.1103/PhysRevD.55.7255, arXiv:hep-ph/9610272 [hep-ph]ADSCrossRefGoogle Scholar
  18. 18.
    LHC Higgs Cross Section Working Group Collaboration, de Florian D et al (2016) Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector. CERN rellow reports: monographs.  https://doi.org/10.23731/CYRM-2017-002, http://cds.cern.ch/record/2227475, 869 pp, 295 figures, 248 tables and 1645 citations. Working group web page https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG
  19. 19.
    LHC Higgs Cross Section Working Group Collaboration, Heinemeyer S, Mariotti C, Passarino G, Tanaka R et al (2013) Handbook of LHC Higgs cross sections: 3. Higgs properties: report of the LHC Higgs cross section working group. CERN yellow reports: monographs.  https://doi.org/10.5170/CERN-2013-004, https://cds.cern.ch/record/1559921. Comments: 404 pp, 139 figures, to be submitted to CERN report. Working group web page https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections
  20. 20.
    Georgi HM, Glashow SL, Machacek ME, Nanopoulos DV (1978) Higgs bosons from two gluon annihilation in proton proton collisions. Phys Rev Lett 40:692.  https://doi.org/10.1103/PhysRevLett.40.692ADSCrossRefGoogle Scholar
  21. 21.
    Anastasiou C, Duhr C, Dulat F, Furlan E, Gehrmann T, Herzog F, Lazopoulos A, Mistlberger B (2016) High precision determination of the gluon fusion Higgs boson cross-section at the LHC. JHEP 05:058.  https://doi.org/10.1007/JHEP05(2016)058, arXiv:1602.00695 [hep-ph]
  22. 22.
    ATLAS Collaboration (2014) Measurement of the Higgs boson mass from the \(H\rightarrow \gamma \gamma \) and \(H \rightarrow ZZ^{*}\rightarrow 4\ell \) channels with the ATLAS detector using 25 fb\(^{-1}\) of pp collision data. Phys Rev D 90(5):052004.  https://doi.org/10.1103/PhysRevD.90.052004, arXiv:1406.3827 [hep-ex]
  23. 23.
    ATLAS Collaboration (2015) Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector. Phys Rev D 91(1):012006.  https://doi.org/10.1103/PhysRevD.91.012006, arXiv:1408.5191 [hep-ex]
  24. 24.
    CMS Collaboration (2014) Observation of the diphoton decay of the Higgs boson and measurement of its properties. Eur Phys J C 74(10):3076.  https://doi.org/10.1140/epjc/s10052-014-3076-z, arXiv:1407.0558 [hep-ex]
  25. 25.
    CMS Collaboration (2014) Measurement of the properties of a Higgs boson in the four-lepton final state. Phys Rev D 89(9):092007.  https://doi.org/10.1103/PhysRevD.89.092007, arXiv:1312.5353 [hep-ex]
  26. 26.
    CMS Collaboration (2015) Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. Eur Phys J C 75(5):212.  https://doi.org/10.1140/epjc/s10052-015-3351-7, arXiv:1412.8662 [hep-ex]
  27. 27.
    ATLAS, CMS Collaboration (2015) Combined measurement of the Higgs boson mass in pp collisions at \(\sqrt{s}=7\) and 8 TeV with the ATLAS and CMS experiments. Phys Rev Lett 114:191803.  https://doi.org/10.1103/PhysRevLett.114.191803, arXiv:1503.07589 [hep-ex]
  28. 28.
    ATLAS, CMS Collaboration (2016) Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV. JHEP 08:045.  https://doi.org/10.1007/JHEP08(2016)045, arXiv:1606.02266 [hep-ex]
  29. 29.
    ATLAS Collaboration (2014) Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector. Phys Rev D 90(11):112015.  https://doi.org/10.1103/PhysRevD.90.112015, arXiv:1408.7084 [hep-ex]
  30. 30.
    ATLAS Collaboration (2015) Observation and measurement of Higgs boson decays to WW\(^*\) with the ATLAS detector. Phys Rev D 92(1):012006.  https://doi.org/10.1103/PhysRevD.92.012006, arXiv:1412.2641 [hep-ex]
  31. 31.
    ATLAS Collaboration (2015) Study of (W/Z)H production and Higgs boson couplings using \(H \rightarrow WW^{\ast }\) decays with the ATLAS detector. JHEP 08:137.  https://doi.org/10.1007/JHEP08(2015)137, arXiv:1506.06641 [hep-ex]
  32. 32.
    CMS Collaboration (2014) Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states. JHEP 01:096.  https://doi.org/10.1007/JHEP01(2014)096, arXiv:1312.1129 [hep-ex]
  33. 33.
    ATLAS Collaboration (2015) Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector. JHEP 04:117.  https://doi.org/10.1007/JHEP04(2015)117, arXiv:1501.04943 [hep-ex]
  34. 34.
    CMS Collaboration (2014) Evidence for the 125 GeV Higgs boson decaying to a pair of \(\tau \) leptons. JHEP 05:104.  https://doi.org/10.1007/JHEP05(2014)104, arXiv:1401.5041 [hep-ex]
  35. 35.
    ATLAS Collaboration (2015) Search for the \(b\bar{b}\) decay of the standard model Higgs boson in associated \((W/Z)H\) production with the ATLAS detector. JHEP 01:069.  https://doi.org/10.1007/JHEP01(2015)069, arXiv:1409.6212 [hep-ex]
  36. 36.
    CMS Collaboration (2014) Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks. Phys Rev D 89(1):012003.  https://doi.org/10.1103/PhysRevD.89.012003, arXiv:1310.3687 [hep-ex]
  37. 37.
    Landau LD (1948) On the angular momentum of a system of two photons. Dokl Akad Nauk Ser Fiz 60(2):207–209.  https://doi.org/10.1016/B978-0-08-010586-4.50070-5
  38. 38.
    Yang C-N (1950) Selection rules for the dematerialization of a particle into two photons. Phys Rev 77:242–245.  https://doi.org/10.1103/PhysRev.77.242ADSCrossRefGoogle Scholar
  39. 39.
    ATLAS Collaboration (2015) Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector. Eur Phys J C 75(10):476.  https://doi.org/10.1140/epjc/s10052-015-3685-1,  https://doi.org/10.1140/epjc/s10052-016-3934-y, arXiv:1506.05669 [hep-ex] (Erratum: Eur Phys J C76(3):152 (2016))
  40. 40.
    ATLAS Collaboration (2015) Determination of spin and parity of the Higgs boson in the \(WW^*\rightarrow e \nu \mu \nu \) decay channel with the ATLAS detector. Eur Phys J C 75(5):231.  https://doi.org/10.1140/epjc/s10052-015-3436-3, arXiv:1503.03643 [hep-ex]
  41. 41.
    Collins JC, Soper DE (1977) Angular distribution of dileptons in high-energy hadron collisions. Phys Rev D 16:2219.  https://doi.org/10.1103/PhysRevD.16.2219ADSCrossRefGoogle Scholar
  42. 42.
    CMS Collaboration (2015) Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV. Phys Rev D 92(1):012004.  https://doi.org/10.1103/PhysRevD.92.012004, arXiv:1411.3441 [hep-ex]

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Nikhef—National Institute for Subatomic Physics (NL)AmsterdamThe Netherlands

Personalised recommendations