Advertisement

Introduction

  • Stefano ManzoniEmail author
Chapter
  • 111 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The work presented in this manuscript is based on the proton-proton collision data from the Large Hadron Collider (LHC) [1] at a center-of-mass energy of 13 TeV recorded by the ATLAS [2] detector in 2015 and 2016. The ATLAS detector is one of the general purpose experiments at the LHC. The research program of ATLAS ranges from the precise measurement of the parameters of the Standard Model (SM), which is the quantum field theory that as of today better describes the elementary particle interactions, to searches for signals of physics beyond the SM. Both these approaches are pursued in this thesis, which presents two different analyses. The first one is the precision measurement of the Higgs boson mass in the di-photon decay channel, and the second one is the search for the production of supersymmetric particles leading to a final state containing two photons and missing transverse momentum.

References

  1. 1.
    Evans L, Bryant P (2008) LHC machine. JINST 3:S08001.  https://doi.org/10.1088/1748-0221/3/08/S08001ADSCrossRefGoogle Scholar
  2. 2.
    ATLAS Collaboration (2008) The ATLAS experiment at the CERN large Hadron collider. JINST 3:S08003.  https://doi.org/10.1088/1748-0221/3/08/S08003Google Scholar
  3. 3.
    CMS Collaboration (2008) The CMS experiment at the CERN LHC. JINST 3:S08004.  https://doi.org/10.1088/1748-0221/3/08/S08004Google Scholar
  4. 4.
    ATLAS Collaboration (2012). Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys Lett B 716:1–29.  https://doi.org/10.1016/j.physletb.2012.08.020, arXiv:1207.7214 [hep-ex]ADSCrossRefGoogle Scholar
  5. 5.
    CMS Collaboration (2012) Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys Lett B 716:30–61.  https://doi.org/10.1016/j.physletb.2012.08.021, arXiv:1207.7235 [hep-ex]ADSCrossRefGoogle Scholar
  6. 6.
    Higgs PW (1964) Broken symmetries, massless particles and gauge fields. Phys Lett 12:132–133.  https://doi.org/10.1016/0031-9163(64)91136-9ADSCrossRefGoogle Scholar
  7. 7.
    Englert F, Brout R (1964) Broken symmetry and the mass of gauge vector mesons. Phys Rev Lett 13:321–323.  https://doi.org/10.1103/PhysRevLett.13.321ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Guralnik G, Hagen C, Kibble T (1964) Global conservation laws and massless particles. Phys Rev Lett 13:585–587.  https://doi.org/10.1103/PhysRevLett.13.585ADSCrossRefGoogle Scholar
  9. 9.
    ATLAS Collaboration (2018) Measurements of Higgs boson properties in the diphoton decay channel with 36 fb\(^{-1}\) of pp collision data at \(\sqrt{s} = 13\) TeV with the ATLAS detector. Phys Rev D 98:052005.  https://doi.org/10.1103/PhysRevD.98.052005, arXiv:1802.04146 [hep-ex]
  10. 10.
    ATLAS Collaboration (2018) Measurement of the Higgs boson mass in the \(H\rightarrow ZZ^* \rightarrow 4\ell \) and \(H \rightarrow \gamma \gamma \) channels with \(\sqrt{s}=13\) TeV pp collisions using the ATLAS detector. Phys Lett B 784:345–366.  https://doi.org/10.1016/j.physletb.2018.07.050, arXiv:1806.00242 [hep-ex]ADSCrossRefGoogle Scholar
  11. 11.
    ATLAS, CMS Collaboration (2015) Combined measurement of the Higgs boson mass in pp collisions at \(\sqrt{s}=7\) and 8 TeV with the ATLAS and CMS experiments. Phys Rev Lett 114:191803.  https://doi.org/10.1103/PhysRevLett.114.191803, arXiv:1503.07589 [hep-ex]
  12. 12.
    Golfand YA, Likhtman EP (1971) Extension of the algebra of Poincare group generators and violation of P invariance. JETP Lett 13:323–326ADSGoogle Scholar
  13. 13.
    Neveu A, Schwarz JH (1971) Factorizable dual model of pions. Nucl Phys B 31:86–112.  https://doi.org/10.1016/0550-3213(71)90448-2ADSCrossRefGoogle Scholar
  14. 14.
    Neveu A, Schwarz JH (1971) Quark model of dual pions. Phys Rev D 4:1109–1111.  https://doi.org/10.1103/PhysRevD.4.1109ADSCrossRefGoogle Scholar
  15. 15.
    Ramond P (1971) Dual theory for free fermions. Phys Rev D 3:2415–2418.  https://doi.org/10.1103/PhysRevD.3.2415ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Volkov DV, Akulov VP (1973) Is the neutrino a goldstone particle? Phys Lett B 46:109–110.  https://doi.org/10.1016/0370-2693(73)90490-5ADSCrossRefGoogle Scholar
  17. 17.
    Wess J, Zumino B (1974) A Lagrangian model invariant under supergauge transformations. Phys Lett B 49:52.  https://doi.org/10.1016/0370-2693(74)90578-4ADSCrossRefGoogle Scholar
  18. 18.
    Wess J, Zumino B (1974) Supergauge transformations in four-dimensions. Nucl Phys B 70:39–50.  https://doi.org/10.1016/0550-3213(74)90355-1ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Alvarez-Gaume L, Claudson M, Wise M (1982) Low-energy supersymmetry. Nucl Phys B 207:96ADSCrossRefGoogle Scholar
  20. 20.
    Dine M, Fischler W, Srednicki M (1981) Supersymmetric technicolor. Nucl Phys B 189:575.  https://doi.org/10.1016/0550-3213(81)90582-4ADSCrossRefGoogle Scholar
  21. 21.
    Dimopoulos S, Raby S (1981) Supercolor. Nucl Phys B 192:353.  https://doi.org/10.1016/0550-3213(81)90430-2ADSCrossRefGoogle Scholar
  22. 22.
    Nappi CR, Ovrut BA (1982) Supersymmetric extension of the \(SU(3)\times SU(2)\times U(1)\) model. Phys Lett B 113:175.  https://doi.org/10.1016/0370-2693(82)90418-XADSCrossRefGoogle Scholar
  23. 23.
    Dine M, Nelson A (1993) Dynamical supersymmetry breaking at low-energies. Phys Rev D 48:1277. arXiv:hep-ph/9303230ADSCrossRefGoogle Scholar
  24. 24.
    Dine M, Nelson A, Shirman Y (1995) Low-energy dynamical supersymmetry breaking simplified. Phys Rev D 51:1362. arXiv:hep-ph/9408384ADSCrossRefGoogle Scholar
  25. 25.
    Dine M, Nelson A, Nir Y, Shirman Y (1996) New tools for low-energy dynamical supersymmetry breaking. Phys Rev D 53:2658. arXiv:hep-ph/9507378ADSCrossRefGoogle Scholar
  26. 26.
    ATLAS Collaboration (2016) Search for supersymmetry in a final state containing two photons and missing transverse momentum in \(\sqrt{s} = 13\) TeV pp collisions at the LHC using the ATLAS detector. Eur Phys J C 76(9):517.  https://doi.org/10.1140/epjc/s10052-016-4344-x, arXiv:1606.09150 [hep-ex]
  27. 27.
    ATLAS Collaboration (2018) Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV pp collisions with the ATLAS detector. Phys Rev D 97(9):092006.  https://doi.org/10.1103/PhysRevD.97.092006, arXiv:1802.03158 [hep-ex]
  28. 28.
    ATLAS Collaboration (2015) Search for photonic signatures of gauge-mediated supersymmetry in 8 TeV pp collisions with the ATLAS detector. Phys Rev D 92:072001. arXiv:1507.05493 [hep-ex]
  29. 29.
    ATLAS Collaboration (2017) Electron and photon reconstruction and performance in ATLAS using a dynamical, topological cell clustering-based approach. Technical report ATL-PHYS-PUB-2017-022, CERN, Geneva. https://cds.cern.ch/record/2298955
  30. 30.
    ATLAS Collaboration (2016) Electron and photon energy calibration with the ATLAS detector using data collected in 2015 at \(\sqrt{s} = 13~\text{TeV}\). ATL-PHYS-PUB-2016-015. https://cds.cern.ch/record/2203514
  31. 31.
    ATLAS Collaboration (2019) Electron and photon energy calibration with the ATLAS detector using 2015-2016 LHC proton-proton collision data. JINST 14(03):P03017.  https://doi.org/10.1088/1748-0221/14/03/P03017, arXiv:1812.03848 [hep-ex]CrossRefGoogle Scholar
  32. 32.
    ATLAS Collaboration (2019) Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016. Eur Phys J C 79(3):205.  https://doi.org/10.1140/epjc/s10052-019-6650-6, arXiv:1810.05087 [hep-ex]
  33. 33.
    ATLAS Collaboration (2017) Measurement of the Higgs boson mass in the \(H \rightarrow ZZ^{*} \rightarrow 4\ell \) and \(H \rightarrow \gamma \gamma \) channels with \(\sqrt{s} = 13~\text{ TeV }\) pp collisions using the ATLAS detector. ATLAS-CONF-2017-046. https://cds.cern.ch/record/2273853
  34. 34.
    ATLAS Collaboration (2017) Measurements of Higgs boson properties in the diphoton decay channel with \(36.1~\text{ fb }^{-1}\) pp collision data at the center-of-mass energy of \(13~\text{ TeV }\) with the ATLAS detector. ATLAS-CONF-2017-045. https://cds.cern.ch/record/2273852
  35. 35.
    ATLAS Collaboration (2017) Search for new phenomena in high-mass diphoton final states using 37 fb\(^{-1}\) of proton–proton collisions collected at \(\sqrt{s}=13\) TeV with the ATLAS detector. Phys Lett B 775:105–125.  https://doi.org/10.1016/j.physletb.2017.10.039, arXiv:1707.04147 [hep-ex]ADSCrossRefGoogle Scholar
  36. 36.
    ATLAS Collaboration (2016) Search for resonances in diphoton events at \(\sqrt{s}=13\) TeV with the ATLAS detector. JHEP 09:001.  https://doi.org/10.1007/JHEP09(2016)001, arXiv:1606.03833 [hep-ex]
  37. 37.
    ATLAS Collaboration (2017) Search for heavy resonances decaying to a \(Z\) boson and a photon in pp collisions at \(\sqrt{s} = 13~\text{ TeV }\) with the ATLAS detector. Phys Lett B 764:11.  https://doi.org/10.1016/j.physletb.2016.11.005, arXiv:1607.06363 [hep-ex]ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Nikhef—National Institute for Subatomic Physics (NL)AmsterdamThe Netherlands

Personalised recommendations