Skip to main content

A Continuum Model and Numerical Simulation for Avascular Tumor Growth

  • Conference paper
  • First Online:
  • 782 Accesses

Part of the book series: Learning and Analytics in Intelligent Systems ((LAIS,volume 3))

Abstract

A spatio-temporal continuum model is developed for avascular tumor growth in two dimensions using fractional advection-diffusion equation as the transportation in biological systems is heterogeneous and anomalous in nature (non-Fickian). The model handles skewness with a suitable parameter. We study the behavior of this model with a set of parameters, and suitable initial and boundary conditions. It is found that the fractional advection-diffusion equation based model is more realistic as it provides more insightful information for tumor growth at the macroscopic level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240(4849):177–184

    Article  Google Scholar 

  2. van Kempen LCL, Leenders WPJ (2006) Tumours can adapt to anti-angiogenic therapy depending on the stromal context: lessons from endothelial cell biology. Eur J Cell Biol 85(2):61–68

    Article  Google Scholar 

  3. Orme ME, Chaplain MAJ (1996) A mathematical model of the first steps of tumour-related angiogenesis: capillary sprout formation and secondary branching. Math Med Biol: J IMA 13(2):73–98

    Article  Google Scholar 

  4. Hystad ME, Rofstad EK (1994) Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids. Int J Cancer 57(4):532–537

    Article  Google Scholar 

  5. Greenspan HP (1972) Models for the growth of a solid tumor by diffusion. Stud Appl Math 51(4):317–340

    Article  Google Scholar 

  6. Ward JP, King JR (1997) Mathematical modelling of avascular-tumour growth. Math Med Biol: J IMA 14(1):39–69

    Article  Google Scholar 

  7. Ward JP, King JR (1999) Mathematical modelling of avascular-tumour growth II: modelling growth saturation. Math Med Biol: J IMA 16(2):171–211

    Article  Google Scholar 

  8. Sherratt JA, Chaplain MAJ (2001) A new mathematical model for avascular tumour growth. J Math Biol 43(4):291–312

    Article  MathSciNet  Google Scholar 

  9. Gal N, Weihs D (2010) Experimental evidence of strong anomalous diffusion in living cells. Phys Rev E81(2):020903

    Google Scholar 

  10. Caputo M, Cametti C (2008) Diffusion with memory in two cases of biological interest. J Theor Biol 254(3):697–703

    Article  MathSciNet  Google Scholar 

  11. Morales-Casique E, Neuman SP, Guadagnini A (2006) Non-local and localized analyses of non-reactive solute transport in bounded randomly heterogeneous porous media: theoretical framework. Adv Water Resour 29(8):1238–1255

    Article  Google Scholar 

  12. Cushman JH, Ginn TR (2000) Fractional advection-dispersion equation: a classical mass balance with convolution-Fickian flux. Water Resour Res 36(12):3763–3766

    Article  Google Scholar 

  13. Roop JP (2006) Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2. J Comput Appl Math 193(1):243–268

    Article  MathSciNet  Google Scholar 

  14. Chen W, Sun H, Zhang X, Korošak D (2010) Anomalous diffusion modeling by fractal and fractional derivatives. Comput Math Appl 59(5):1754–1758

    Article  MathSciNet  Google Scholar 

  15. Meerschaert MM, Tadjeran C (2006) Finite difference approximations for two-sided space-fractional partial differential equations. Appl Numer Math 56(1):80–90

    Article  MathSciNet  Google Scholar 

  16. Sherratt JA, Murray JD (1991) Mathematical analysis of a basic model for epidermal wound healing. J Math Biol 29(5):389–404

    Article  Google Scholar 

  17. Casciari JJ, Sotirchos SV, Sutherland RM (1988) Glucose diffusivity in multicellular tumor spheroids. Can Res 48(14):3905–3909

    Google Scholar 

  18. Burton AC (1966) Rate of growth of solid tumours as a problem of diffusion. Growth 30(2):157–176

    Google Scholar 

  19. Busini V, Arosio P, Masi M (2007) Mechanistic modelling of avascular tumor growth and pharmacokinetics influence—Part I. Chem Eng Sci 62(7):1877–1886

    Article  Google Scholar 

  20. Notes of oncologist. https://notesofoncologist.com/2018/02/26/how-fast-do-tumours-grow/ .Accessed 28 Jan 2019

Download references

Acknowledgement

We are thankful to University Grant Commission, Government of India for supporting the first author with a Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sounak Sadhukhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sadhukhan, S., Basu, S.K., Kumar, N. (2020). A Continuum Model and Numerical Simulation for Avascular Tumor Growth. In: Satapathy, S.C., Raju, K.S., Shyamala, K., Krishna, D.R., Favorskaya, M.N. (eds) Advances in Decision Sciences, Image Processing, Security and Computer Vision. ICETE 2019. Learning and Analytics in Intelligent Systems, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-24322-7_8

Download citation

Publish with us

Policies and ethics