Skip to main content

A Review on the Recent Development of Ambient Cured Geopolymer Composites

  • Conference paper
  • First Online:

Part of the book series: Learning and Analytics in Intelligent Systems ((LAIS,volume 2))

Abstract

Geopolymer composite is synthesized with aggregates and industrial by-products materials those are thriving in alumina and silica, energized using a powerful alkali solution. Geopolymer composites required high temperature curing for achieving higher strength which restricted the use in cast-in-situ work. This literature provides a condensed explanation on the recent development of the ambient cured Geopolymer composites. It has been observed that geopolymer composites contributed better physical properties viz. workability and mechanical parameters viz. compressive, split tensile and flexural strength along with the superior durability properties like sulfate and acid resistance, resistance to freezing and thawing, shrinkage, corrosion and water absorptions etc. compared to the cement composites in the ambient cured condition and also reduces the greenhouse gas production. In general, production of high strength geopolymer composites in the ambient cured condition requires concentration of sodium hydroxide 10–12 Molarity, alkali to binder ratio 0.35–0.5 and the ratio between sodium silicate and sodium hydroxides 1.5–2.5.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shafigh P, Mahmud HB, Jumaat MZ, Zargar M (2014) Agricultural wastes as aggregate in concrete mixtures - a review. Constr Build Mater 53:110–117. https://doi.org/10.1016/j.conbuildmat.2013.11.074

    Article  Google Scholar 

  2. Mehta A, Siddique R (2016) An overview of geopolymers derived from industrial by-products. Constr Build Mater 127:183–198. https://doi.org/10.1016/j.conbuildmat.2016.09.136

    Article  Google Scholar 

  3. Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2015) On the development of fly ash-based geopolymer concrete 467–472

    Google Scholar 

  4. Davidovits J (1999) Chemistry of geopolymeric systems, terminology. In: 99 International Conference, France, pp 9–40

    Google Scholar 

  5. Turner LK, Collins FG (2013) Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater 43:125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023

    Article  Google Scholar 

  6. Islam A, Alengaram UJ, Jumaat MZ, Bashar II, Kabir SMA (2015) Engineering properties and carbon footprint of ground granulated blast-furnace slag-palm oil fuel ash-based structural geopolymer concrete. Constr Build Mater 101:503–521. https://doi.org/10.1016/j.conbuildmat.2015.10.026

    Article  Google Scholar 

  7. Ng C, Alengaram UJ, Wong LS, Mo KH, Jumaat MZ, Ramesh S (2018) A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Constr Build Mater 186:550–576. https://doi.org/10.1016/j.conbuildmat.2018.07.075

    Article  Google Scholar 

  8. Mehta A, Siddique R (2017) Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash. Constr Build Mater 150:792–807. https://doi.org/10.1016/j.conbuildmat.2017.06.067

    Article  Google Scholar 

  9. Olivia M, Nikraz H (2012) Properties of fly ash geopolymer concrete designed by Taguchi method. Mater Des 36:191–198. https://doi.org/10.1016/j.matdes.2011.10.036

    Article  Google Scholar 

  10. Albitar M, Ali MSM, Visintin P, Drechsler M (2017) Durability evaluation of geopolymer and conventional concretes. Constr Build Mater 136:374–385. https://doi.org/10.1016/j.conbuildmat.2017.01.056

    Article  Google Scholar 

  11. Saha S, Rajasekaran C (2017) Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Constr Build Mater 146:615–620. https://doi.org/10.1016/j.conbuildmat.2017.04.139

    Article  Google Scholar 

  12. Nath P, Sarker PK (2015) Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cem Concr Compos 55:205–214. https://doi.org/10.1016/j.cemconcomp.2014.08.008

    Article  Google Scholar 

  13. Dep PS, Nath P, Sarker K (2014) The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. J Mater 62:32–39. https://doi.org/10.1016/j.matdes.2014.05.001

    Article  Google Scholar 

  14. Suwan T, Fan M (2014) Influence of OPC replacement and manufacturing procedures on the properties of self-cured geopolymer. Constr Build Mater 73:551–561. https://doi.org/10.1016/j.conbuildmat.2014.09.065

    Article  Google Scholar 

  15. Atiş CD, Görür EB, Karahan O, Bilim C, Ilkentapar S, Luga E (2015) Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Constr Build Mater 96:673–678. https://doi.org/10.1016/j.conbuildmat.2015.08.089

    Article  Google Scholar 

  16. Albitar M, Ali MSM, Visintin P (2017) Experimental study on fly ash and lead smelter slag-based geopolymer concrete columns. Constr Build Mater 141:104–112. https://doi.org/10.1016/j.conbuildmat.2017.03.014

    Article  Google Scholar 

  17. Abdulkareem OA, Al Bakri AMM, Kamarudin H, Nizar IK, Ala’eddin AS (2014) Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Constr Build Mater 50:377–387. https://doi.org/10.1016/j.conbuildmat.2013.09.047

    Article  Google Scholar 

  18. Joseph B, Mathew G (2012) Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Sci Iran 19:1188–1194. https://doi.org/10.1016/j.scient.2012.07.006

    Article  Google Scholar 

  19. Hadi MNS, Farhan NA, Sheikh MN (2017) Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Constr Build Mater 140:424–431. https://doi.org/10.1016/j.conbuildmat.2017.02.131

    Article  Google Scholar 

  20. Boonserm K, Sata V, Pimraksa K, Chindaprasirt P (2012) Improved geopolymerization of bottom ash by incorporating fly ash and using waste gypsum as additive. Cem Concr Compos 34:819–824. https://doi.org/10.1016/j.cemconcomp.2012.04.001

    Article  Google Scholar 

  21. Ahmari S, Zhang L (2013) Utilization of cement kiln dust (CKD) to enhance mine tailings-based geopolymer bricks. Constr Build Mater 40:1002–1011. https://doi.org/10.1016/j.conbuildmat.2012.11.069

    Article  Google Scholar 

  22. Adak D, Sarkar M, Mandal S (2014) Effect of nano-silica on strength and durability of fly ash based geopolymer mortar. Constr Build Mater 70:453–459. https://doi.org/10.1016/j.conbuildmat.2014.07.093

    Article  Google Scholar 

  23. Ash RH, Patel YJ, Shah N (2018) Enhancement of the properties of ground granulated blast furnace slag based self compacting geopolymer concrete by incorporating. Constr Build Mater 171:654–662. https://doi.org/10.1016/j.conbuildmat.2018.03.166

    Article  Google Scholar 

  24. Sun Z, Lin X, Vollpracht A (2018) Pervious concrete made of alkali activated slag and geopolymers. Constr Build Mater 189:797–803. https://doi.org/10.1016/j.conbuildmat.2018.09.067

    Article  Google Scholar 

  25. Alanazi H, Hu J, Kim Y (2019) Effect of slag, silica fume, and metakaolin on properties and performance of alkali-activated fly ash cured at ambient temperature. Constr Build Mater 197:747–756. https://doi.org/10.1016/j.conbuildmat.2018.11.172

    Article  Google Scholar 

  26. Parveen, Singhal D, Junaid MT, Jindal BB, Mehta A (2018) Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing. Constr Build Mater 180:298–307. https://doi.org/10.1016/j.conbuildmat.2018.05.286

    Article  Google Scholar 

  27. Patel YJ, Shah N (2018) Study on workability and hardened properties of self compacted GEOPOLYMER concrete cured at ambient temperature. 11:1–12. https://doi.org/10.17485/ijst/2018/v11i1/117698

  28. Venu Madhav T, Ramana Reddy IV, Ghorpade VG, Jyothirmai S (2018) Compressivestrength study of geopolymer mortar using quarry rock dust. Mater Lett 231:105–108. https://doi.org/10.1016/j.matlet.2018.07.133

    Article  Google Scholar 

  29. Fang G, Ho WK, Tu W, Zhang M (2018) Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Constr Build Mater 172:476–487. https://doi.org/10.1016/j.conbuildmat.2018.04.008

    Article  Google Scholar 

  30. Askarian M, Tao Z, Adam G, Samali B (2018) Mechanical properties of ambient cured one-part hybrid OPC-geopolymer concrete 186:330–337

    Google Scholar 

  31. Cao Y, Tao Z, Pan Z, Wuhrer R (2018) Effect of calcium aluminate cement on geopolymer concrete cured at ambient temperature. Constr Build Mater 191:242–252. https://doi.org/10.1016/j.conbuildmat.2018.09.204

    Article  Google Scholar 

  32. Nath P, Sarker PK (2017) Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. 130:22–31

    Google Scholar 

  33. Babu DV (2018) Assessing the performance of molarity and alkaline activator ratio on engineering properties of self-compacting alkaline activated concrete at ambient temperature. J Build Eng 20:137–155. https://doi.org/10.1016/j.jobe.2018.07.005

    Article  Google Scholar 

  34. Rodrigue A, Duchesne J, Fournier B, Bissonnette B (2018) Influence of added water and fly ash content on the characteristics, properties and early-age cracking sensitivity of alkali-activated slag/fly ash concrete cured at ambient temperature. 171:929–941

    Google Scholar 

  35. Reddy MS, Dinakar P, Rao BH (2018) Mix design development of fl y ash and ground granulated blast furnace slag based geopolymer concrete. J. Build. Eng. 20:712–722. https://doi.org/10.1016/j.jobe.2018.09.010

    Article  Google Scholar 

  36. Karthik A, Sudalaimani K, Vijayakumar CT (2017) Durability study on coal fly ash-blast furnace slag geopolymer concretes with bio-additives. Ceram Int 43:11935–11943. https://doi.org/10.1016/j.ceramint.2017.06.042

    Article  Google Scholar 

  37. Karthik A, Sudalaimani K, Vijayakumar CT, Saravanakumar SS (2019) Effect of bio-additives on physico-chemical properties of fly ash-ground granulated blast furnace slag based self cured geopolymer mortars. 361:56–63

    Google Scholar 

  38. Albitar M, Ali MM, Visintin P (2017) Experimental study on fly ash and lead smelter slag-based geopolymer concrete columns. 141:104–112

    Google Scholar 

  39. Farhan NA, Sheikh MN, Hadi MNS (2018) Behaviour of ambient cured steel fibre reinforced geopolymer concrete columns under axial and flexural loads. Structures 15:184–195. https://doi.org/10.1016/j.istruc.2018.07.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, M., Kulkarni, N.H. (2020). A Review on the Recent Development of Ambient Cured Geopolymer Composites. In: Satapathy, S., Raju, K., Molugaram, K., Krishnaiah, A., Tsihrintzis, G. (eds) International Conference on Emerging Trends in Engineering (ICETE). Learning and Analytics in Intelligent Systems, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-24314-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24314-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24313-5

  • Online ISBN: 978-3-030-24314-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics