Skip to main content

Neural Network Based Approach for Learning Planning Action Models

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11624))

Abstract

Artificial Intelligence (AI) planning technology represents one of the most efficient solutions to guide goal driven agents in domain problems which are mostly characterized by problem solving features. The current proliferation of physical and virtual autonomous agents have therefore triggered a growing interest in the automatic acquisition of action models, which can take advantage of the observation capabilities of agents, which sense world states through their sensors. In this work we present a Neural Network (NN) based approach for learning AI planning action models by observation in noisy environments. The system learns by observing a set of execution patterns of the same action in different contexts. The perceptions of both pre/post action execution states are used to train the NN learning component and are assumed to be affected by noise, which could be due to inaccurate reading or malfunctioning of the sensors. Preliminary experiments shows that the proposed NN learning module seems to be more resilient to unforeseen situations with respect to traditional propositional-based approaches to action model learning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ai-Chang, M., et al.: MAPGEN: mixed-initiative planning and scheduling for the mars exploration rover mission. IEEE Intell. Syst. 19(1), 8–12 (2004). https://doi.org/10.1109/MIS.2004.1265878

    Article  Google Scholar 

  2. Arora, A., Fiorino, H., Pellier, D., Métivier, M., Pesty, S.: A review of learning planning action models. Knowl. Eng. Rev. 33, e20 (2018). https://doi.org/10.1017/S0269888918000188

    Article  Google Scholar 

  3. Balac, N., Gaines, D.M., Fisher, D.: Learning action models for navigation in noisy environments (2000)

    Google Scholar 

  4. Chiancone, A., Franzoni, V., Niyogi, R., Milani, A.: Improving link ranking quality by quasi-common neighbourhood, pp. 21–26. IEEE Press (2015). https://doi.org/10.1109/ICCSA.2015.19

  5. Cresswell, S., Gregory, P.: Generalised domain model acquisition from action traces. In: ICAPS 2011 - Proceedings of the 21st International Conference on Automated Planning and Scheduling (2011)

    Google Scholar 

  6. Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem proving to problem solving. Artif. Intell. 2(3–4), 189–208 (1971). https://doi.org/10.1016/0004-3702(71)90010-5

    Article  MATH  Google Scholar 

  7. Franzoni, V., Leung, C.H.C., Li, Y., Mengoni, P., Milani, A.: Set similarity measures for images based on collective knowledge. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9155, pp. 408–417. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21404-7_30

    Chapter  Google Scholar 

  8. Franzoni, V., Li, Y., Mengoni, P.: A path-based model for emotion abstraction on Facebook using sentiment analysis and taxonomy knowledge, pp. 947–952. IEEE Press (2017)

    Google Scholar 

  9. Franzoni, V., Mencacci, M., Mengoni, P., Milani, A.: Heuristics for semantic path search in Wikipedia. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8584, pp. 327–340. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09153-2_25

    Chapter  Google Scholar 

  10. Franzoni, V., Milani, A.: PMING distance: a collaborative semantic proximity measure, vol. 2, pp. 442–449. IEEE Press (2012). https://doi.org/10.1109/WI-IAT.2012.226

  11. Franzoni, V., Milani, A., Pallottelli, S., Leung, C., Li, Y.: Context-based image semantic similarity, pp. 1280–1284. IEEE Press (2016). https://doi.org/10.1109/FSKD.2015.7382127

  12. Hoffmann, J.: FF: the fast-forward planning system. AI Mag. 22, 57 (2001)

    Google Scholar 

  13. Jiménez, S., De La Rosa, T., Fernández, S., Fernández, F., Borrajo, D.: A review of machine learning for automated planning. Knowl. Eng. Rev. 27(4), 433–467 (2012). https://doi.org/10.1017/S026988891200001X

    Article  Google Scholar 

  14. Leung, C.H.C., Li, Y., Milani, A., Franzoni, V.: Collective evolutionary concept distance based query expansion for effective web document retrieval. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7974, pp. 657–672. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39649-6_47

    Chapter  Google Scholar 

  15. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529 (2015). https://doi.org/10.1038/nature14236

    Article  Google Scholar 

  16. Molineaux, M., Aha, D.W.: Learning unknown event models. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2014, pp. 395–401. AAAI Press (2014)

    Google Scholar 

  17. Mourao, K.: Learning probabilistic planning operators from noisy observations. In: 31st Workshop of the UK Planning & Scheduling Special Interest Group (PlanSIG 2013) (2014)

    Google Scholar 

  18. Mourao, K., Zettlemoyer, L.S., Petrick, R.P.A., Steedman, M.: Learning STRIPS operators from noisy and incomplete observations, October 2012

    Google Scholar 

  19. Newton, M.A.H., Levine, J.: Implicit learning of compiled macro-actions for planning. Front. Artif. Intell. Appl. 215, 323–328 (2010)

    Google Scholar 

  20. Safaei, J., Ghassem-Sani, G.: Incremental learning of planning operators in stochastic domains. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 644–655. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69507-3_56

    Chapter  MATH  Google Scholar 

  21. Shah, M., et al.: Knowledge engineering tools in planning: state-of-the-art and future challenges. Knowl. Eng. Plann. Sched. 53, 53 (2013)

    Google Scholar 

  22. Shen, W.M.: Discovery as autonomous learning from the environment. Mach. Learn. 12(1), 143–165 (1993). https://doi.org/10.1023/A:1022827618816

    Article  Google Scholar 

  23. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484 (2016)

    Article  Google Scholar 

  24. Wang, X.: Learning by observation and practice: an incremental approach for planning operator acquisition. In: Machine Learning Proceedings 1995, January, pp. 549–557 (1995). https://doi.org/10.1016/B978-1-55860-377-6.50074-8

  25. Weber, B.G., Mateas, M., Jhala, A.: Learning from demonstration for goal-driven autonomy. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2012, pp. 1176–1182. AAAI Press (2012)

    Google Scholar 

  26. Winograd, T.: Understanding Natural Language. Academic Press Inc., Orlando (1972)

    Book  Google Scholar 

  27. Zhuo, H.H., Kambhampati, S.: Action-model acquisition from noisy plan traces. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI 2013, pp. 2444–2450. AAAI Press (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Biondi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milani, A., Niyogi, R., Biondi, G. (2019). Neural Network Based Approach for Learning Planning Action Models. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11624. Springer, Cham. https://doi.org/10.1007/978-3-030-24311-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24311-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24310-4

  • Online ISBN: 978-3-030-24311-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics