Skip to main content

Hypergeometric Polynomials, Hyperharmonic Discrete and Continuous Expansions: Evaluations, Interconnections, Extensions

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

The important mathematical subject of special functions and orthogonal polynomials found in the last decades a systematization regarding those of hypergeometric type. The growth of these developments are due to interconnections with quantum angular momentum theory which is basic to that of spin-networks, of recent relevance in various branches of physics. Here we consider their power as providing expansion basis sets such as specifically are needed in chemistry to represents potential energy surfaces, the achievements being discussed and illustrated. A novel visualization of key members of the polynomial sets attributes a central role to the Kravchuk polynomials: its relationship with Wigner’s rotation matrix elements are here emphasized and taken as exemplary for computational and analytical features. The sets are considered regarding progress on the formulation of a discretization technique, the hyperquantization, which allows to efficiently deal with physical problems where quantum mechanical operators act on continuous manifolds, to yield discrete grids suitable for computation of matrix elements without need of multidimensional integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 22 January 2021

    The original version of this chapter was inadvertently published without two authors who contributed to the chapter also. The missing authors were Noelia Faginas-Lago and Andrea Lombardi. Their names and affiliations have now been added and the correct sequence of the authors is: Cecilia Coletti, Federico Palazzetti, Roger W. Anderson, Vincenzo Aquilanti, Noelia Faginas-Lago and Andrea Lombardi.

References

  1. Coletti, C., Aquilanti, V., Palazzetti, F.: Hypergeometric orthogonal polynomials as expansion basis sets for atomic and molecular orbitals: the Jacobi ladder. Adv. Quantum Chem. https://doi.org/10.1016/bs.aiq.2019.05.002

  2. Anderson, R.W., Aquilanti, V., Cavalli, S., Grossi, G.: Stereodirected discrete bases in hindered rotor problems: atom-diatom and pendular states. J. Phys. Chem. 97, 2443–2452 (1993). https://doi.org/10.1021/j100112a053

    Article  Google Scholar 

  3. Anderson, R.W., Aquilanti, V.: The discrete representation correspondence between quantum and classical spatial distributions of angular momentum vectors. J. Chem. Phys. 124, 214104 (9 p.) (2006)

    Google Scholar 

  4. Anderson, R.W., Aquilanti, V., da S. Ferreira, C.: Exact computation and large angular momentum asymptotics of 3nj symbols: semiclassical disentangling of spin networks. J. Chem. Phys. 129, 161101 (5 p.) (2008)

    Google Scholar 

  5. Anderson, R.W., Aquilanti, V., Marzuoli, A.: 3nj morphogenesis and semiclassical disentangling. J. Phys. Chem. A 113, 15106–15117 (2009). https://doi.org/10.1021/jp905212a

    Article  Google Scholar 

  6. Aquilanti, V., Caglioti, C., Lombardi, A., Maciel, Glauciete S., Palazzetti, F.: Screens for displaying chirality changing mechanisms of a series of peroxides and persulfides from conformational structures computed by quantum chemistry. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 354–368. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62404-4_26

    Chapter  Google Scholar 

  7. Caglioti, C., Santos, R.F.D., Aquilanti, V., Lombardi, A., Palazzetti, F.: Screen mapping of structural and electric properties, chirality changing rates and racemization times of chiral peroxides and persulfides. In: AIP Conference Proceedings, vol. 2040, p. 020021 (2018). https://doi.org/10.1063/1.5079063

  8. Aquilanti, V., et al.: Quadrilaterals on the square screen of their diagonals: Regge symmetries of quantum mechanical spin networks and Grashof classical mechanisms of four-bar linkages. Rend. Lincei 30, 67–81 (2019). https://doi.org/10.1007/s12210-019-00776-x

    Article  Google Scholar 

  9. Anderson, R.W., Aquilanti, V., Bitencourt, A.C.P., Marinelli, D., Ragni, M.: The screen representation of spin networks: 2D recurrence, eigenvalue equation for 6j symbols, geometric interpretation and Hamiltonian dynamics. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 46–59. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39643-4_4

    Chapter  Google Scholar 

  10. Bitencourt, A.C.P., Ragni, M., Littlejohn, R.G., Anderson, R., Aquilanti, V.: The screen representation of vector coupling coefficients or Wigner 3j symbols: exact computation and illustration of the asymptotic behavior. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 468–481. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_32

    Chapter  Google Scholar 

  11. Aquilanti, V., et al.: The astrochemical observatory: computational and theoretical focus on molecular chirality changing torsions around O - O and S - S bonds. In: AIP Conference Proceedings, vol. 1906, p. 030010 (2017). https://doi.org/10.1063/1.5012289

  12. Aquilanti, V., Cavalli, S.: Coordinates for molecular dynamics: orthogonal local systems. J. Chem. Phys. 85, 1355–1361 (1986). https://doi.org/10.1063/1.451223

    Article  Google Scholar 

  13. Aquilanti, V., Cavalli, S., Grossi, G.: Hyperspherical coordinates for molecular dynamics by the method of trees and the mapping of potential energy surfaces for triatomic systems. J. Chem. Phys. 85, 1362–1375 (1986). https://doi.org/10.1063/1.451224

    Article  Google Scholar 

  14. Aquilanti, V., Capecchi, G., Cavalli, S.: Hyperspherical coordinates for chemical reaction dynamics. Adv. Quantum Chem. 36, 341–363 (2000). https://doi.org/10.1016/S0065-3276(08)60491-8

    Article  Google Scholar 

  15. Aquilanti, V., Tonzani, S.: Three-body problem in quantum mechanics: hyperspherical elliptic coordinates and harmonic basis sets. J. Chem. Phys. 120, 4066–4073 (2004). https://doi.org/10.1063/1.1644098

    Article  Google Scholar 

  16. Aquilanti, V., Ascenzi, D., Fedeli, R., Pirani, F., Cappelletti, D.: Molecular beam scattering of nitrogen molecules in supersonic seeded beams: a probe of rotational alignment. J. Phys. Chem. A 101, 7648–7656 (2002). https://doi.org/10.1021/jp971237t

    Article  Google Scholar 

  17. Aquilanti, V., Lombardi, A., Littlejohn, R.G.: Hyperspherical harmonics for polyatomic systems: basis set for collective motions. Theoret. Chem. Acc. 111, 400–406 (2004). https://doi.org/10.1007/s00214-003-0526-3

    Article  Google Scholar 

  18. Aquilanti, V., Lombardi, A., Sevryuk, M.B.: Phase-space invariants for aggregates of particles: hyperangular momenta and partitions of the classical kinetic energy. J. Chem. Phys. 121, 5579 (2004). https://doi.org/10.1063/1.1785785

    Article  Google Scholar 

  19. Sevryuk, M.B., Lombardi, A., Aquilanti, V.: Hyperangular momenta and energy partitions in multidimensional many-particle classical mechanics: the invariance approach to cluster dynamics. Phys. Rev. A - At. Mol. Opt. Phys. 72, 033201 (2005). https://doi.org/10.1103/PhysRevA.72.033201

  20. Aquilanti, V., Cavalli, S., Coletti, C., Grossi, G.: Alternative Sturmian bases and momentum space orbitals: an application to the hydrogen molecular ion. Chem. Phys. 209, 405–419 (1996). https://doi.org/10.1016/0301-0104(96)00162-0

    Article  Google Scholar 

  21. Aquilanti, V., Cavalli, S., Coletti, C.: The d-dimensional hydrogen atom: hyperspherical harmonics as momentum space orbitals and alternative Sturmian basis sets. Chem. Phys. 214, 1–13 (1997). https://doi.org/10.1016/S0301-0104(96)00310-2

    Article  Google Scholar 

  22. Aquilanti, V., Capecchi, G.: Regular article Harmonic analysis and discrete polynomials. From semiclassical angular momentum theory to the hyperquantization algorithm. Theoret. Chem. Acc. 104, 183–188 (2000). https://doi.org/10.1007/s002140000148

    Article  Google Scholar 

  23. Aquilanti, V., Cavalli, S., Coletti, C., Di Domenico, D., Grossi, G.: Hyperspherical harmonics as Sturmian orbitals in momentum space: a systematic approach to the few-body Coulomb problem. Int. Rev. Phys. Chem. 20, 673–709 (2010). https://doi.org/10.1080/01442350110075926

    Article  Google Scholar 

  24. Aquilanti, V., Caligiana, A., Cavalli, S.: Hydrogenic elliptic orbitals. Coulomb Sturmian sets, and recoupling coefficients among alternative bases. Int. J. Quantum Chem. 92, 99–117 (2003)

    Article  Google Scholar 

  25. Aquilanti, V., Caligiana, A.: Sturmian approach to one-electron many-center system: integrals and iteration schemes. Chem. Phys. Lett. 366, 157–164 (2002)

    Article  Google Scholar 

  26. Aquilanti, V., Caligiana, A., Cavalli, S., Coletti, C.: Hydrogen orbitals in momentum space and hyperspherical harmonics: elliptic Sturmian basis sets. Int. J. Quantum Chem. 92, 212–228 (2003)

    Article  Google Scholar 

  27. Calderini, D., Cavalli, S., Coletti, C., Grossi, G., Aquilanti, V.: Hydrogenoid orbitals revisited: from Slater orbitals to Coulomb Sturmians. J. Chem. Sci. 124, 187–192 (2012). https://doi.org/10.1007/s12039-012-0215-7

    Article  Google Scholar 

  28. Coletti, C., Calderini, D., Aquilanti, V.: D-dimensional Kepler-Coulomb Sturmians and hyperspherical harmonics as complete orthonormal atomic and molecular orbitals. Adv. Quantum Chem. 67, 73–127 (2013). https://doi.org/10.1016/B978-0-12-411544-6.00005-4

    Article  Google Scholar 

  29. Calderini, D., Coletti, C., Grossi, G., Aquilanti, V.: Continuous and discrete algorithms in quantum chemistry: polynomial sets, spin networks and Sturmian orbitals. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 32–45. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39643-4_3

    Chapter  Google Scholar 

  30. Aquilanti, V., Cavalli, S., Coletti, C.: Angular and hyperangular momentum recoupling, harmonic superposition and Racah polynomials: a recursive algorithm. Chem. Phys. Lett. 344, 587–600 (2001)

    Article  Google Scholar 

  31. Aquilanti, V., Coletti, C.: 3nj-symbols and harmonic superposition coefficients: an icosahedral abacus. Chem. Phys. Lett. 344, 601–611 (2001). https://doi.org/10.1016/S0009-2614(01)00757-6

    Article  Google Scholar 

  32. De Fazio, D., Cavalli, S., Aquilanti, V.: Orthogonal polynomials of a discrete variable as expansion basis sets in quantum mechanics the hyperquantization algorithm. Int. J. Quantum Chem. 93, 91–111 (2003)

    Article  Google Scholar 

  33. Aquilanti, V., Marinelli, D., Marzuoli, A.: Symmetric coupling of angular momenta, quadratic algebras and discrete polynomials. J. Phys: Conf. Ser. 482, 012001 (2014). https://doi.org/10.1088/1742-6596/482/1/012001

    Article  Google Scholar 

  34. Dos Santos, R.F., et al.: Couplings and recouplings of four angular momenta: alternative 9j symbols and spin addition diagrams. J. Mol. Model. 23, 147 (2017). https://doi.org/10.1007/s00894-017-3320-1

    Article  Google Scholar 

  35. Arruda, M.S., Santos, R.F., Marinelli, D., Aquilanti, V.: Spin-coupling diagrams and incidence geometry: a note on combinatorial and quantum-computational aspects. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 431–442. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_33

    Chapter  Google Scholar 

  36. Dos Santos, R.F., et al.: Quantum angular momentum, projective geometry and the networks of seven and ten spins: Fano, Desargues and alternative incidence configurations. J. Mol. Spectrosc. 337, 153–162 (2017). https://doi.org/10.1016/j.jms.2017.05.005

    Article  Google Scholar 

  37. Aquilanti, V., Marzuoli, A.: Projective Ponzano-Regge spin networks and their symmetries. J. Phys: Conf. Ser. 965, 012005 (2018). https://doi.org/10.1088/1742-6596/965/1/012005

    Article  Google Scholar 

  38. Coletti, C., Dos Santos, R.F., Arruda, M.S., Bitencourt, A.C.P., Ragni, M., Aquilanti, V.: Spin networks and Sturmian orbitals: orthogonal complete polynomial sets in molecular quantum mechanics. In: AIP Conference Proceedings, vol. 1906, p. 030013 (2017). https://doi.org/10.1063/1.5012292

  39. Anderson, R.W., Aquilanti, V.: Spherical and hyperbolic spin networks: the q-extensions of Wigner-Racah 6j coefficients and general orthogonal discrete basis sets in applied quantum mechanics. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 338–353. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62404-4_25

    Chapter  Google Scholar 

  40. Aquilanti, V., Haggard, H.M., Littlejohn, R.G., Yu, L.: Semiclassical analysis of Wigner 3 j-symbol. J. Phys. A 40, 5637–5674 (2007)

    Article  MathSciNet  Google Scholar 

  41. Aquilanti, V., Bitencourt, A.C.P., da S. Ferreira, C., Marzuoli, A., Ragni, M.: Quantum and semiclassical spin networks: from atomic and molecular physics to quantum computing and gravity. Phys. Scr. 78, 058103 (2008)

    Google Scholar 

  42. Aquilanti, V., Bitencourt, A.C.P., da S. Ferreira, C., Marzuoli, A., Ragni, M.: Combinatorics of angular momentum recoupling theory: spin networks, their asymptotics and applications. Theoret. Chem. Acc. 123, 237 (2009)

    Google Scholar 

  43. Aquilanti, V., Haggard, H.M., Hedeman, A., Jeevangee, N., Littlejohn, R., Yu, L.: Semiclassical mechanics of the Wigner 6j-symbol. J. Phys. A 45, 065209 (2012)

    Article  MathSciNet  Google Scholar 

  44. Bitencourt, A.C.P., Marzuoli, A., Ragni, M., Anderson, R.W., Aquilanti, V.: Exact and asymptotic computations of elementary spin networks: classification of the quantum–classical boundaries. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 723–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_54

    Chapter  Google Scholar 

  45. Aquilanti, V., Marinelli, D., Marzuoli, A.: Hamiltonian dynamics of a quantum of space: hidden symmetries and spectrum of the volume operator, and discrete orthogonal polynomials. J. Phys. A Math. Theor. 46 (2013). https://doi.org/10.1088/1751-8113/46/17/175303

  46. Aquilanti, V., Grossi, G.: Discrete representations by artificial quantization in the quantum mechanics of anisotropic interactions. Lett. Al Nuovo Cimento Ser. 2(42), 157–162 (1985). https://doi.org/10.1007/BF02739563

    Article  Google Scholar 

  47. Aquilanti, V., Cavalli, S., Grossi, G.: Discrete analogs of spherical harmonics and their use in quantum mechanics: the hyperquantization algorithm. Theoret. Chim. Acta 79, 283–296 (1991). https://doi.org/10.1007/BF01113697

    Article  Google Scholar 

  48. Aquilanti, V., Cavalli, S., De Fazio, D.: Hyperquantization algorithm. I. Theory for triatomic systems. J. Chem. Phys. 109, 3792–3804 (1998)

    Article  Google Scholar 

  49. Aquilanti, V., et al.: Hyperquantization algorithm. II. Implementation for the F + H2 reaction dynamics including open-shell and spin-orbit interactions. J. Chem. Phys. 109, 3805–3818 (1998). https://doi.org/10.1063/1.476980

    Article  Google Scholar 

  50. Aquilanti, V., Cavalli, S., De Fazio, D., Volpi, A., Aguilar, A.: Probabilities for the F + H = HF + H reaction by the hyperquantization algorithm: alternative sequential diagonalization schemes. The Hamiltonian matrix. Phys. Chem. Chem. Phys. 1, 1091–1098 (1999)

    Article  Google Scholar 

  51. Aquilanti, V., et al.: Exact reaction dynamics by the hyperquantization algorithm: integral and differential cross sections for F + H2, including long-range and spin – orbit effects. 4, 401–415 (2002). https://doi.org/10.1039/b107239k

  52. Aquilanti, V., Cavalli, S., De Fazio, D., Volpi, A., Aguilar, A., Lucas, J.M.: Benchmark rate constants by the hyperquantization algorithm. The F + H2 reaction for various potential energy surfaces: features of the entrance channel and of the transition state, and low temperature reactivity. Chem. Phys. 308, 237–253 (2005). https://doi.org/10.1016/j.chemphys.2004.03.027

  53. Aquilanti, V., Cavalli, S., De Fazio, D., Simone, A., Tscherbul, T.V.: Direct evaluation of the lifetime matrix by the hyperquantization algorithm: narrow resonances in the reaction dynamics and their splitting for nonzero angular momentum. J. Chem. Phys. 123, 054314 (2005). https://doi.org/10.1063/1.1988311

    Article  Google Scholar 

  54. Aquilanti, V., Cavalli, S., Simoni, A., Aguilar, A., Lucas, J.M., De Fazio, D.: Lifetime of reactive scattering resonances: Q-matrix analysis and angular momentum dependence for the F + H2 reaction by the hyperquantization algorithm. J. Chem. Phys. 121, 11675–11690 (2004). https://doi.org/10.1063/1.1814096

    Article  Google Scholar 

  55. Aquilanti, V., Cavalli, S., De Fazio, D., Volpi, A.: Theory of electronically nonadiabatic reactions: rotational, coriolis, spin – orbit couplings and the hyperquantization algorithm. Int. J. Quantum Chem. 85, 368–381 (2001)

    Article  Google Scholar 

  56. Aquilanti, V., Cavalli, S., De Fazio, D.: Angular and hyperangular momentum coupling coefficients as Hahn polynomials. J. Phys. Chem. 99, 15694–15698 (1995)

    Article  Google Scholar 

  57. Littlejohn, R.G., Mitchell, K.A., Reinsch, M., Aquilanti, V., Cavalli, S.: Internal spaces, kinematic rotations, and body frames for four-atom systems. Phys. Rev. A - At. Mol. Opt. Phys. 58, 3718–3738 (1998). https://doi.org/10.1103/PhysRevA.58.3718

  58. Alvarino, J.M.M., et al.: Stereodynamics from the stereodirected representation of the exact quantum S matrix: the Li + HF = LiF + H reaction. J. Phys. Chem. A 102, 9638–9644 (1998)

    Article  Google Scholar 

  59. Aldegunde, J., Alvariño, J.M., De Fazio, D., Cavalli, S., Grossi, G., Aquilanti, V.: Quantum stereodynamics of the F + H2 → HF + H reaction by the stereodirected S-matrix approach. Chem. Phys. 301, 251–259 (2004). https://doi.org/10.1016/j.chemphys.2004.02.002

    Article  Google Scholar 

  60. Aquilanti, V., Liuti, G., Pirani, F., Vecchiocattivi, F.: Orientational and spin-orbital dependence of interatomic forces. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 85, 955–964 (1989). https://doi.org/10.1039/F29898500955

  61. Kasai, T., et al.: Directions of chemical change: experimental characterization of the stereodynamics of photodissociation and reactive processes. Phys. Chem. Chem. Phys. 16, 9776–9790 (2014). https://doi.org/10.1039/c4cp00464g

    Article  Google Scholar 

  62. Lombardi, A., Palazzetti, F., Aquilanti, V., Grossi, G.: Collisions of chiral molecules theoretical aspects and experiments. In: AIP Conference Proceedings, vol. 2040, p. 020020 (2018). https://doi.org/10.1063/1.5079062

  63. Lombardi, A., Palazzetti, F.: Chirality in molecular collision dynamics. J. Phys.: Condens. Matter 30, 063003 (2018). https://doi.org/10.1088/1361-648X/aaa1c8

    Article  Google Scholar 

  64. Albernaz, A.F., Barreto, P.R.P., Aquilanti, V., Lombardi, A., Palazzetti, F., Pirani, F.: The astrochemical observatory: the interaction between helium and the chiral molecule propylene oxide. In: AIP Conference Proceedings, vol. 2040, p. 020018 (2018). https://doi.org/10.1063/1.5079060

  65. Lombardi, A., Palazzetti, F., Aquilanti, V., Pirani, F., Casavecchia, P.: The astrochemical observatory: experimental and computational focus on the chiral molecule propylene oxide as a case study. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 267–280. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62404-4_20

    Chapter  Google Scholar 

  66. Palazzetti, F., Maciel, G.S., Lombardi, A., Grossi, G., Aquilanti, V.: The astrochemical observatory: molecules in the laboratory and in the cosmos. J. Chin. Chem. Soc. 59 (2012). https://doi.org/10.1002/jccs.201200242

  67. Che, D.-C., Kanda, K., Palazzetti, F., Aquilanti, V., Kasai, T.: Electrostatic hexapole state-selection of the asymmetric-top molecule propylene oxide: rotational and orientational distributions. Chem. Phys. 399, 180–192 (2012). https://doi.org/10.1016/j.chemphys.2011.11.020

    Article  Google Scholar 

  68. Che, D.-C., Palazzetti, F., Okuno, Y., Aquilanti, V., Kasai, T.: Electrostatic hexapole state-selection of the asymmetric-top molecule propylene oxide. J. Phys. Chem. A 114, 3280–3286 (2010). https://doi.org/10.1021/jp909553t

    Article  Google Scholar 

  69. Aquilanti, V., Beneventi, L., Grossi, G., Vecchiocattivi, F.: Coupling schemes for atom-diatom interactions and an adiabatic decoupling treatment of rotational temperature effects on glory scattering. J. Chem. Phys. 89, 751–761 (1988). https://doi.org/10.1063/1.455198

    Article  Google Scholar 

  70. Barreto, P.R.P., Albernaz, A.F., Palazzetti, F., Lombardi, A., Grossi, G., Aquilanti, V.: Hyperspherical representation of potential energy surfaces: intermolecular interactions in tetra-atomic and penta-atomic systems. Phys. Scr. 84, 28111 (2011). https://doi.org/10.1088/0031-8949/84/02/028111

    Article  Google Scholar 

  71. Barreto, P.R.P., Vilela, A.F.A., Lombardi, A., Maciel, G.S., Palazzetti, F., Aquilanti, V.: The hydrogen peroxide-rare gas systems: quantum chemical calculations and hyperspherical harmonic representation of the potential energy surface for atom-floppy molecule interactions. J. Phys. Chem. A 111, 12754–12762 (2007). https://doi.org/10.1021/jp076268v

    Article  Google Scholar 

  72. Maciel, G.S., Barreto, P.R.P., Palazzetti, F., Lombardi, A., Aquilanti, V.: A quantum chemical study of H2S2: intramolecular torsional mode and intermolecular interactions with rare gases. J. Chem. Phys. 129, 164302 (2008). https://doi.org/10.1063/1.2994732

    Article  Google Scholar 

  73. Barreto, P.R.P., Palazzetti, F., Grossi, G., Lombardi, A., Maciel, G.S., Vilela, A.F.A.: Range and strength of intermolecular forces for van der Waals complexes of the type H2Xn-Rg, with X = O, S and n = 1, 2. Int. J. Quantum Chem. 110, 777–786 (2010). https://doi.org/10.1002/qua.22127

    Article  Google Scholar 

  74. Lombardi, A., Palazzetti, F., Maciel, G.S., Aquilanti, V., Sevryuk, M.B.: Simulation of oriented collision dynamics of simple chiral molecules. Int. J. Quantum Chem. 111, 1651–1658 (2011). https://doi.org/10.1002/qua.22816

    Article  Google Scholar 

  75. Lombardi, A., Palazzetti, F., Peroncelli, L., Grossi, G., Aquilanti, V., Sevryuk, M.B.: Few-body quantum and many-body classical hyperspherical approaches to reactions and to cluster dynamics. Theoret. Chem. Acc 117, 709–721 (2007). https://doi.org/10.1007/s00214-006-0195-0

    Article  Google Scholar 

  76. Lombardi, A., Palazzetti, F., Grossi, G., Aquilanti, V., Castro Palacio, J.C., Rubayo Soneira, J.: Hyperspherical and related views of the dynamics of nanoclusters. Phys. Scr. 80, 048103 (2009). https://doi.org/10.1088/0031-8949/80/04/048103

  77. Lombardi, A., et al.: Spherical and hyperspherical harmonics representation of van der Waals aggregates. In: AIP Conference Proceedings, vol. 1790, pp. 020005 (2016). https://doi.org/10.1063/1.4968631

  78. Aquilanti, V., Bartolomei, M., Cappelletti, D., Carmona-Novillo, E., Pirani, F.: The N2−N2 system: an experimental potential energy surface and calculated rotovibrational levels of the molecular nitrogen dimer. J. Chem. Phys. 117, 615 (2002)

    Article  Google Scholar 

  79. Aquilanti, V., et al.: Molecular beam scattering of aligned oxygen molecules. The nature of the bond in the O2-O2 dimer. J. Am. Chem. Soc. 121, 10794–10802 (1999). https://doi.org/10.1021/ja9917215

  80. Aquilanti, V., Bartolomei, M., Carmona-Novillo, E., Pirani, F.: The asymmetric dimer N2–O2: characterization of the potential energy surface and quantum mechanical calculation of rotovibrational levels. J. Chem. Phys. 118, 2214 (2003)

    Article  Google Scholar 

  81. Barreto, P.R.P., et al.: The spherical-harmonics representation for the interaction between diatomic molecules: the general case and applications to CO–CO and CO–HF. J. Mol. Spectrosc. 337, 163–177 (2017). https://doi.org/10.1016/j.jms.2017.05.009

  82. Barreto, P.R.P., Ribas, V.W., Palazzetti, F.: Potential energy surface for the H2O-H2 system. J. Phys. Chem. A 113, 15047–15054 (2009). https://doi.org/10.1021/jp9051819

  83. Barreto, P.R.B., et al.: Potential energy surfaces for interactions of H2O with H2, N2 and O2: a hyperspherical harmonics representation, and a minimal model for the H2O-rare-gas-atom systems. Comput. Theoret. Chem. 990, 53–61 (2012). https://doi.org/10.1016/j.comptc.2011.12.024

  84. Barreto, P.R.P., Albernaz, A.F., Palazzetti, F.: Potential energy surfaces for van der Waals complexes of rare gases with H2S and H2S2: extension to xenon interactions and hyperspherical harmonics representation. Int. J. Quantum Chem. 112, 834–847 (2012). https://doi.org/10.1002/qua.23073

  85. Anderson, R.: Discrete orthogonal transformations corresponding to the discrete polynomials of the Askey scheme. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 490–507. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0_34

    Chapter  Google Scholar 

  86. Nikiforov, A.F., Suslov, S.K., Uvarov, V.B.: Classical Orthogonal Polynomials of a Discrete Variable. Springer, Berlin (1991). https://doi.org/10.1007/978-3-642-74748-9_2

    Book  MATH  Google Scholar 

  87. Braun, P.A., Gewinski, F., Haake, H., Schomerus, H.: Semiclassics of rotation and torsion. Z. Phys. B 100, 115–127 (1996)

    Article  MathSciNet  Google Scholar 

  88. Aquilanti, V., Grossi, G.: Angular momentum coupling schemes in the quantum mechanical treatment of P-state atom collisions. J. Chem. Phys. 73, 1165–1172 (1980). https://doi.org/10.1063/1.440270

    Article  Google Scholar 

  89. Palazzetti, F., Munusamy, E., Lombardi, A., Grossi, G., Aquilanti, V.: Spherical and hyperspherical representation of potential energy surfaces for intermolecular interactions. Int. J. Quantum Chem. 111, 318–332 (2011). https://doi.org/10.1002/qua.22688

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Palazzetti .

Editor information

Editors and Affiliations

Appendix: Discrete and Continuous Harmonic Expansions of Intermolecular Interaction

Appendix: Discrete and Continuous Harmonic Expansions of Intermolecular Interaction

Experiments carried out by the Stern-Gerlach magnet in the early 1990s, shown that under supersonic conditions seeded O2 would undergo variation in speed and redistribution of the internal states (for the case of oxygen rotational and vibrational cooling), producing as additional effect the molecular alignment, i.e. the possibility of forcing the molecule to rotate in a preferential plane. Alignment was initially induced to various diatomic molecules and linear hydrocarbons, then extended to disk-shaped molecules like benzene. Current developments are attempting to exploit the helicoidal motion of chiral molecules. The technique determined significant advances in the area of the molecular beam scattering, especially for what concerns the phenomenology of anisotropies related to van der Waals interactions.

A conceptually important advance of the asymptotic (semiclassical) discretization of continuous function exemplified in this work lead to hyperquantization algorithms. They are based on the observation that discrete analogues of hyperspherical harmonics can be defined by means of the 3nj symbols. The method was initially employed to solve the Schrödinger equation for the prototypical reaction F + H2 and generalized to include other triatomic systems and various quantum effects. Exact representations have been also employed to describe steric effects in quantum mechanics, such as the interpretation of reactive scattering resonances. Tools refined for the quantum mechanical treatment of few body systems have been employed to give a reformulation of the classical mechanics protocol, to be applied in many-body problems characterizing atomic and molecular clusters.

More conventionally, spherical and hyperspherical harmonics are implemented in quantum chemical calculations to compute energy as a function of a properly defined distance and of one or more angles, according to the complexity of the system. This approach is inspired by the open-shell – closed-shell atom–atom interactions, where the angle θ defines a minimal model for collinear (θ = 0) and perpendicular (θ = π/2) configurations and had been initially to the atom – diatom case [60, 69, 88]. The method consists in an exact transformation of quantum chemical (or experimental) input data related to a minimum set of configurations, the “leading configurations”, whose choice relies upon geometrical and physical characteristics of the system, by a multipolar expansion [89].

Extension of the simplest case, the abovementioned triatomic system, have been done for four- and five- body problems. For example, systems formed by two diatomic molecules can be described by two Jacobi vectors lying along the chemical bonds and a third vector which joins the centers-of-mass of the two molecules. Hyperspherical harmonics have also been applied to describe interactions of floppy molecules, characterized by having an active torsional motion, as a prototype of enantiomeric change in chiral molecules [71, 73].

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coletti, C., Palazzetti, F., Anderson, R.W., Aquilanti, V., Faginas-Lago, N., Lombardi, A. (2019). Hypergeometric Polynomials, Hyperharmonic Discrete and Continuous Expansions: Evaluations, Interconnections, Extensions. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11624. Springer, Cham. https://doi.org/10.1007/978-3-030-24311-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24311-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24310-4

  • Online ISBN: 978-3-030-24311-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics