Skip to main content

Automation of Workflow Design in an Industrial Enterprise

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

The fundamental scientific problem of the business process management theory is to increase the efficiency of automated systems workflow synthesis and processing in order to reduce the time spent on their development, increasing the success of processing diagram models, namely the implementation of the requirements for resource constraints, functionality, financial component and deadlines, as well as improving the diagram models quality in terms of error control, narrowing the semantic gap between business process analysis and execution. The article proposes an approach to the analysis of workflow diagram models on the basis of temporal automatic grammar with linear analysis time. The approach allows to control and analyze structural-semantic and temporal errors. The results of the research represent that the approach has significant advantages over similar methods of analysis. The effectiveness of this analytical approach is proved by concrete real and relevant examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC) (2008)

    Google Scholar 

  2. Wang,Y., Fan, Y.: Using temporal logics for modeling and analysis of workflows. In: IEEE International Conference on E-Commerce Technology for Dynamic E-Business (2004)

    Google Scholar 

  3. Heitmeyer, C., Lynch, N.: The generalized railroad crossing: a case study in formal verification of real-time systems. In: Proceedings Real-Time Systems Symposium REAL-94 (1994)

    Google Scholar 

  4. Schael, T.: Workflow Management Systems for Process Organisations. LNCS, vol. 1096. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49450-2

    Book  Google Scholar 

  5. Van Der Aalst, W.M.P., et al.: ExSpect 6.4 an executable specification tool for hierarchical colored petri nets. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 455–464. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44988-4_26

    Chapter  Google Scholar 

  6. Dellarocas, C., Klein, M.: A knowledge-based approach for designing robust business processes. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 50–65. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45594-9_4

    Chapter  Google Scholar 

  7. Sharp, A., McDermott, P.: Workflow Modeling: Tools for Process Improvement and Applications Development. Artech House, Norwood (2009)

    Google Scholar 

  8. Bock, C.: Introduction to business process and definition metamodel. US National Institute of Standard and Technology. Manufacturing Engineering (2008)

    Google Scholar 

  9. Poizat, P., Salaün, G., Krishna, A.: Checking business process evolution. In: Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 36–53. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57666-4_4

    Chapter  Google Scholar 

  10. Martens, A.: Analyzing web service based business processes. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31984-9_3

    Chapter  Google Scholar 

  11. Raedts, I., Petkovic, M., Usenko, Y.S., van der Werf, J.M.E., Groote, J.F., Somers, L.J.: Transformation of BPMN models for behaviour analysis. In: Proceedings of the 5th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems (2007)

    Google Scholar 

  12. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

    Article  Google Scholar 

  13. Wong, P.Y.H., Gibbons, J.: A process semantics for BPMN. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88194-0_22

    Chapter  Google Scholar 

  14. Decker, G., Weske, M.: Interaction-centric modeling of process choreographies. Inf. Syst. 36(2), 292–312 (2011)

    Article  Google Scholar 

  15. Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_22

    Chapter  Google Scholar 

  16. Güdemann, M., Poizat, P., Salaün, G., Dumont, A.: VerChor: a framework for verifying choreographies. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp. 226–230. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37057-1_16

    Chapter  Google Scholar 

  17. Kossak, F., et al.: A rigorous semantics for BPMN 2.0 process diagrams. In: Kossak, F., et al. (eds.) A rigorous semantics for BPMN 2.0 process diagrams, pp. 29–152. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09931-6_4

    Chapter  Google Scholar 

  18. Janssen, W., Mateescu, R., Mauw, S., Springintveld, J.: Verifying business processes using SPIN. In: Proceedings of the 4th International SPIN Workshop, November, pp. 21–36 (1998)

    Google Scholar 

  19. Van Der Aalst, W., Van Hee, K.M., van Hee, K.: Workflow Management: Models, Methods, and Systems. MIT press, Cambridge (2004)

    Google Scholar 

  20. Fischer, L. (ed.): Workflow Handbook 2005. Workflow Management Coalition (2005)

    Google Scholar 

  21. Booch, G., Jacobson, I., Rumbaugh, J.: The unified modeling language reference manual (1999)

    Google Scholar 

  22. Business Process Model and Notation (BPMN), v. 2.0. OMG (2011). http://www.omg.org/spec/BPMN/2.0

  23. Mayer, R.J., Painter, M.K., de Witte, P.S.: IDEF Family of Methods for Concurrent Engineering and Business Re-Engineering Applications. Knowledge Based Systems, College Station (1994)

    Google Scholar 

  24. Santos, P.S., Almeida, J.P.A., Pianissolla, T.L.: Uncovering the organisational modelling and business process modelling languages in the ARIS method. Int. J. Bus. Process Integr. Manag. 5(2), 130 (2011)

    Article  Google Scholar 

  25. Pozewaunig, H., Eder, J., Liebhart, W.: ePERT: extending PERT for workflow management systems. In: ADBIS, September, pp. 217–224 (1997)

    Google Scholar 

  26. https://ascon.ru

  27. Roth, C.: Using Microsoft Visio 2010. Pearson Education, London (2011)

    Google Scholar 

  28. Visual Paradigm: Visual Paradigm for UML. Visual Paradigm International, Hong Kong (2010)

    Google Scholar 

  29. Hoffmann, H.-P.: Deploying model-based systems engineering with IBM® rational® solutions for systems and software engineering. In: 2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC) (2012)

    Google Scholar 

  30. Suppes, P.: Syntactic methods in pattern recognition (K. S. Fu). SIAM Rev. 19(4), 746 (1977)

    Article  Google Scholar 

  31. Costagliola, G., De Lucia, A., Orefice, S., Tortora, G.: Positional grammars: a formalism for LR-like parsing of visual languages. In: Marriott, K., Meyer, B. (eds.) Visual Language Theory, pp. 171–191. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-1676-6_5

    Chapter  MATH  Google Scholar 

  32. Zhang, D.-Q., Zhang, K.: Reserved graph grammar: a specification tool for diagrammatic VPLs. In: Proceedings of the 1997 IEEE Symposium on Visual Languages (1997). (Cat. No. 97TB100180)

    Google Scholar 

  33. Rekers, J., Schürr, A.: Defining and parsing visual languages with layered graph grammars. J. Vis. Lang. Comput. 8(1), 27–55 (1997)

    Article  Google Scholar 

  34. Zhang, D.-Q.: A context-sensitive graph grammar formalism for the specification of visual languages. Comput. J. 44(3), 186–200 (2001)

    Article  Google Scholar 

  35. Sharov, O.G., Afanas’ev, A.N.: Syntax-directed implementation of visual languages based on automaton graphical grammars. Program. Comput. Softw. 31(6), 332–339 (2005)

    Article  Google Scholar 

  36. Sharov, O.G., Afanas’ev, A.N.: Methods and tools for translation of graphical diagrams. Program. Comput. Softw. 37(3), 171–179 (2011)

    Article  MathSciNet  Google Scholar 

  37. Aho, A.V.: Compilers: Principles, Techniques and Tools (for Anna University), 2nd edn. Pearson Education, Noida (2003)

    Google Scholar 

  38. Sharov, O.G., Afanasiev, A.N.: Syntax error recovery in graphical languages. Program. Comput. Softw. 34(1), 44–48 (2008)

    Article  Google Scholar 

  39. Afanasyev, A., Voit, N.: Grammar-algebraic approach to analyze workflows. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10963, pp. 499–510. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95171-3_39

    Chapter  Google Scholar 

  40. Afanasyev, A., Voit, N., Timofeeva, O., Epifanov, V.: Analysis and control of hybrid diagrammatical workflows. In: Abraham, A., Kovalev, S., Tarassov, V., Snasel, V., Vasileva, M., Sukhanov, A. (eds.) IITI 2017. AISC, vol. 679, pp. 124–133. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68321-8_13

    Chapter  Google Scholar 

  41. Afanasyev, A., Ukhanova, M., Ionova, I., Voit, N.: Processing of design and manufacturing workflows in a large enterprise. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10963, pp. 565–576. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95171-3_44

    Chapter  Google Scholar 

  42. Voit, N.N.: Development of timed RT-grammars for analysis of business process at manufacturing and in cyber-physical systems. In: 2017 International Conference on Computing Networking and Informatics (ICCNI) (2017)

    Google Scholar 

  43. Afanasyev, A.N., Voit, N.N., Kirillov, S.Y.: Development of RYT-grammar for analysis and control dynamic workflows. In: 2017 International Conference on Computing Networking and Informatics (ICCNI) (2017)

    Google Scholar 

  44. Afanasyev, A., Voit, N., Gaynullin, R.: The analysis of diagrammatic models of workflows in design of the complex automated systems. In: Abraham, A., Kovalev, S., Tarassov, V., Snášel, V. (eds.) Proceedings of the First International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’16). AISC, vol. 450, pp. 227–236. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33609-1_20

    Chapter  Google Scholar 

  45. Afanasyev, A., Voit, N., Gaynullin, R.: The analysis of diagrammatic of workflows in design of the automated systems. In: Uncertainty Modelling in Knowledge Engineering and Decision Making (2016)

    Google Scholar 

  46. Afanasyev, A.N., Voit, N.N., Voevodin, E.Y., Gainullin, R.F.: Control of UML diagrams in designing automated systems software. In: 2015 9th International Conference on Application of Information and Communication Technologies (AICT) (2015)

    Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR according to the research project № 17-07-01417 and Russian Foundation for Basic Research and the government of the region of the Russian Federation, grant № 18-47-730032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Kirillov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Voit, N., Kirillov, S., Kanev, D. (2019). Automation of Workflow Design in an Industrial Enterprise. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11623. Springer, Cham. https://doi.org/10.1007/978-3-030-24308-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24308-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24307-4

  • Online ISBN: 978-3-030-24308-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics