Skip to main content

Integrating Multi-agent Simulations into Enterprise Application Landscapes

  • Conference paper
  • First Online:
Highlights of Practical Applications of Survivable Agents and Multi-Agent Systems. The PAAMS Collection (PAAMS 2019)

Abstract

To cope with increasingly complex business, political, and economic environments, agent-based simulations (ABS) have been proposed for modeling complex systems such as human societies, transport systems, and markets. ABS enable experts to assess the influence of exogenous parameters (e.g., climate changes or stock market prices), as well as the impact of policies and their long-term consequences. Despite some successes, the use of ABS is hindered by a set of interrelated factors. First, ABS are mainly created and used by researchers and experts in academia and specialized consulting firms. Second, the results of ABS are typically not automatically integrated into the corresponding business process. Instead, the integration is undertaken by human users who are responsible for adjusting the implemented policy to take into account the results of the ABS. These limitations are exacerbated when the results of the ABS affect multi-party agreements (e.g., contracts) since this requires all involved actors to agree on the validity of the simulation, on how and when to take its results into account, and on how to split the losses/gains caused by these changes. To address these challenges, this paper explores the integration of ABS into enterprise application landscapes. In particular, we present an architecture that integrates ABS into cross-organizational enterprise resource planning (ERP) processes. As part of this, we propose a multi-agent systems simulator for the Hyperledger blockchain and describe an example supply chain management scenario type to illustrate the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://nodejs.org/.

  2. 2.

    Note that JS-son does not require a BDI approach; instead, beliefs can activate plans right away.

  3. 3.

    https://www.npmjs.com/.

  4. 4.

    For a comprehensive overview of agent platforms, see Kravari and Bassiliades [15].

  5. 5.

    Potentially, product quality could be dynamically adjusted as well.

  6. 6.

    Other concerns are performance [26] and security issues.

References

  1. Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.: Agent based modelling and simulation tools: a review of the state-of-art software. Comput. Sci. Rev. 24, 13–33 (2017)

    Article  Google Scholar 

  2. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, p. 30. ACM (2018)

    Google Scholar 

  3. Bañgate, J., Dugdale, J., Beck, E., Adam, C.: A multi-agent system approach in evaluating human spatio-temporal vulnerability to seismic risk using social attachment. WIT Trans. Eng. Sci. 121, 47–58 (2018)

    Article  Google Scholar 

  4. Berger, T., Schreinemachers, P., Woelcke, J.: Multi-agent simulation for the targeting of development policies in less-favored areas. Agric. Syst. 88(1), 28–43 (2006)

    Article  Google Scholar 

  5. Bessghaier, N., Zargayouna, M., Balbo, F.: Management of urban parking: an agent-based approach. In: Ramsay, A., Agre, G. (eds.) AIMSA 2012. LNCS (LNAI), vol. 7557, pp. 276–285. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33185-5_31

    Chapter  Google Scholar 

  6. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak Using Jason. Wiley Series in Agent Technology. Wiley, Hoboken (2007)

    Book  Google Scholar 

  7. Calvaresi, D., Dubovitskaya, A., Calbimonte, J.P., Taveter, K., Schumacher, M.: Multi-agent systems and blockchain: results from a systematic literature review. In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds.) PAAMS 2018. LNCS (LNAI), vol. 10978, pp. 110–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94580-4_9

    Chapter  Google Scholar 

  8. Davidsson, P.: Agent based social simulation: a computer science view. J. Artif. Soc. Soc. Simul. 5(1), 1–7 (2002)

    Google Scholar 

  9. Drozd, O., Lazur, Y., Serbin, R.: Theoretical and legal perspective on certain types of legal liability in cryptocurrency relations. Baltic J. Econ. Stud. 3(5), 221–228 (2018)

    Article  Google Scholar 

  10. Gregor, K.: IBM wants to make 2017 the year of blockchain enterprise deployment (2017). https://www.ibm.com/blockchain/in-en/assets/IDC_Report__IBM_wants_to_make_2017_the_year_of_BlockChain_Enterprise__Deployment.pdf (2017)

  11. Haarmann, S., Batoulis, K., Nikaj, A., Weske, M.: DMN decision execution on the ethereum blockchain. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 327–341. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_20

    Chapter  Google Scholar 

  12. Kampik, T., Najjar, A., Calvaresi, D.: MAS-aided approval for bypassing decentralized processes: an architecture. In: 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 713–718. IEEE (2018)

    Google Scholar 

  13. Kampik, T., Nieves, J.C.: JS-son - a minimalistic JavaScript BDI agent library. In: 7th International Workshop on Engineering Multi-Agent Systems (EMAS 2019), Montreal, Canada, 13–14 May 2019 (2019)

    Google Scholar 

  14. Korpela, K., Hallikas, J., Dahlberg, T.: Digital supply chain transformation toward blockchain integration. In: Proceedings of the 50th Hawaii International Conference on System Sciences (2017)

    Google Scholar 

  15. Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul. 18(1), 11 (2015)

    Article  Google Scholar 

  16. Lee, J.H., Kim, C.O.: Multi-agent systems applications in manufacturing systems and supply chain management: a review paper. Int. J. Prod. Res. 46(1), 233–265 (2008)

    Article  Google Scholar 

  17. López-Pintado, O., García-Bañuelos, L., Dumas, M., Weber, I.: Caterpillar: a blockchain-based business process management system. In: Proceedings of the BPM Demo Track and BPM Dissertation Award Co-Located with 15th International Conference on Business Process Modeling (BPM 2017), Barcelona, Spain (2017)

    Google Scholar 

  18. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multiagent simulation environment. Simulation 81(7), 517–527 (2005)

    Article  Google Scholar 

  19. Mendling, J., et al.: Blockchains for business process management-challenges and opportunities. ACM Trans. Manag. Inf. Syst. (TMIS) 9(1), 4 (2018)

    Google Scholar 

  20. Najjar, A.: Multi-agent negotiation for QoE-aware cloud elasticity management. Ph.D. thesis, École nationale supérieure des mines de Saint-Étienne (2015)

    Google Scholar 

  21. Najjar, A., Mualla, Y., Boissier, O., Picard, G.: AQUAMan: QoE-driven cost-aware mechanism for SaaS acceptability rate adaptation. In: Proceedings of the International Conference on Web Intelligence, pp. 331–339. ACM (2017)

    Google Scholar 

  22. North, M.J., et al.: Complex adaptive systems modeling with repast simphony. Complex Adapt. Syst. Model. 1(1), 3 (2013)

    Article  Google Scholar 

  23. Ogie, R., Adam, C., Perez, P.: A review of structural approach to flood management in coastal megacities of developing nations: current research and future directions. J. Environ. Plann. Manag. 1–21 (2019)

    Google Scholar 

  24. OMG: business process model and notation (BPMN), version 2.0, January 2011

    Google Scholar 

  25. OMG: decision model and notation (DMN), version 1.1, June 2016

    Google Scholar 

  26. Pongnumkul, S., Siripanpornchana, C., Thajchayapong, S.: Performance analysis of private blockchain platforms in varying workloads. In: 26th International Conference on Computer Communication and Networks (ICCCN), pp. 1–6. IEEE (2017)

    Google Scholar 

  27. Rimba, P., Tran, A.B., Weber, I., Staples, M., Ponomarev, A., Xu, X.: Comparing blockchain and cloud services for business process execution. In: 2017 IEEE International Conference on Software Architecture (ICSA), pp. 257–260. IEEE (2017)

    Google Scholar 

  28. Serrano, E., Iglesias, C.A.: Validating viral marketing strategies in Twitter via agent-based social simulation. Expert Syst. Appl. 50, 140–150 (2016)

    Article  Google Scholar 

  29. Serrano, E., Iglesias, C.A., Garijo, M.: A survey of Twitter rumor spreading simulations. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. LNCS (LNAI), vol. 9329, pp. 113–122. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24069-5_11

    Chapter  Google Scholar 

  30. Sklar, E.: NetLogo, a multi-agent simulation environment (2007)

    Article  Google Scholar 

  31. Sokolowski, J.A., Banks, C.M., Hayes, R.L.: Modeling population displacement in the Syrian city of Aleppo. In: Proceedings of the Winter Simulation Conference 2014, pp. 252–263. IEEE (2014)

    Google Scholar 

  32. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper, vol. 151, pp. 1–32 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation and partially funded by the German Federal Ministry of Education and Research (BMBF) within the Framework Concept “Industrie 4.0 – Kollaborationen in dynamischen Wertschöpfungsnetzwerken (InKoWe)”/managed by the Project Management Agency Forschungszentrum Karlsruhe (PTKA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timotheus Kampik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kampik, T., Najjar, A. (2019). Integrating Multi-agent Simulations into Enterprise Application Landscapes. In: De La Prieta, F., et al. Highlights of Practical Applications of Survivable Agents and Multi-Agent Systems. The PAAMS Collection. PAAMS 2019. Communications in Computer and Information Science, vol 1047. Springer, Cham. https://doi.org/10.1007/978-3-030-24299-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24299-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24298-5

  • Online ISBN: 978-3-030-24299-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics