Skip to main content

Efficient Simple Large Scattered 3D Vector Fields Radial Basis Functions Approximation Using Space Subdivision

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11619))

Included in the following conference series:

Abstract

The Radial basis function (RBF) approximation is an efficient method for scattered scalar and vector data fields. However its application is very difficult in the case of large scattered data. This paper presents RBF approximation together with space subdivision technique for large vector fields.

For large scattered data sets a space subdivision technique with overlapping 3D cells is used. Blending of overlapped 3D cells is used to obtain continuity and smoothness. The proposed method is applicable for scalar and vector data sets as well. Experiments proved applicability of this approach and results with the tornado large vector field data set are presented.

The research was supported by projects Czech Science Foundation (GACR) No. GA17-05534S and partially by SGS 2019-016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data set of EF5 tornado courtesy of Leigh Orf from Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin, Madison, WI, USA.

References

  1. Beatson, R.K., Light, W.A., Billings, S.D.: Fast solution of the radial basis function interpolation equations: domain decomposition methods. SIAM J. Sci. Comput. 22(5), 1717–1740 (2001)

    Article  MathSciNet  Google Scholar 

  2. Cabrera, D.A.C., Gonzalez-Casanova, P., Gout, C., Juárez, L.H., Reséndiz, L.R.: Vector field approximation using radial basis functions. J. Comput. Appl. Math. 240, 163–173 (2013)

    Article  MathSciNet  Google Scholar 

  3. Cai, X.-C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21(2), 792–797 (1999)

    Article  MathSciNet  Google Scholar 

  4. Dey, T.K., Levine, J.A., Wenger, R.: A Delaunay simplification algorithm for vector fields. In: 15th Pacific Conference on Computer Graphics and Applications, PG 2007, pp. 281–290. IEEE (2007)

    Google Scholar 

  5. Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Schempp, W., Zeller, K. (eds.) Constructive Theory of Functions of Several Variables, pp. 85–100. Springer, Heidelberg (1977). https://doi.org/10.1007/BFb0086566

    Chapter  Google Scholar 

  6. Golub, G.H., Van Loan, C.F.: Matrix computations, vol. 3. JHU Press (2012)

    Google Scholar 

  7. Haase, G., Martin, D., Offner, G.: Towards RBF interpolation on heterogeneous HPC systems. In: Lirkov, I., Margenov, S.D., Waśniewski, J. (eds.) LSSC 2015. LNCS, vol. 9374, pp. 182–190. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26520-9_19

    Chapter  Google Scholar 

  8. Halton, J.H.: Algorithm 247: radical-inverse quasi-random point sequence. Commun. ACM 7(12), 701–702 (1964)

    Article  Google Scholar 

  9. Householder, A.S.: Unitary triangularization of a nonsymmetric matrix. J. ACM (JACM) 5(4), 339–342 (1958)

    Article  MathSciNet  Google Scholar 

  10. Koch, S., Kasten, J., Wiebel, A., Scheuermann, G., Hlawitschka, M.: 2D vector field approximation using linear neighborhoods. Vis. Comput. 32(12), 1563–1578 (2016)

    Article  Google Scholar 

  11. Laramee, R.S., Hauser, H., Zhao, L., Post, F.H.: Topology-based flow visualization, the state of the art. In: Hauser, H., Hagen, H., Theisel, H. (eds.) Topology-Based Methods in Visualization, pp. 1–19. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70823-0_1

    Chapter  MATH  Google Scholar 

  12. Ling, L., Kansa, E.J.: Preconditioning for radial basis functions with domain decomposition methods. Math. Comput. Model. 40(13), 1413–1427 (2004)

    Article  MathSciNet  Google Scholar 

  13. Majdisova, Z., Skala, V.: A radial basis function approximation for large datasets. Proc. SIGRAD 2016(127), 9–14 (2016)

    Google Scholar 

  14. Majdisova, Z., Skala, V.: Big geo data surface approximation using radial basis functions: a comparative study. Comput. Geosci. 109, 51–58 (2017)

    Article  Google Scholar 

  15. Majdisova, Z., Skala, V.: Radial basis function approximations: comparison and applications. Appl. Math. Model. 51, 728–743 (2017)

    Article  MathSciNet  Google Scholar 

  16. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.-P.: Multi-level partition of unity implicits. In: ACM Siggraph 2005 Courses, pp. 463–470. ACM (2005)

    Google Scholar 

  17. Ohtake, Y., Belyaev, A.G., Seidel, H.: A multi-scale approach to 3D scattered data interpolation with compactly supported basis function. In: 2003 International Conference on Shape Modeling and Applications (SMI 2003), pp. 153–164, 292 (2003)

    Google Scholar 

  18. Orf, L., Wilhelmson, R., Wicker, L.: Visualization of a simulated long-track ef5 tornado embedded within a supercell thunderstorm. Parallel Comput. 55, 28–34 (2016)

    Article  Google Scholar 

  19. Skala, V.: Fast interpolation and approximation of scattered multidimensional and dynamic data using radial basis functions. WSEAS Trans. Math. 12(5), 501–511 (2013)

    Google Scholar 

  20. Skala, V., Smolik, M.: A new approach to vector field interpolation, classification and robust critical points detection using radial basis functions. In: Silhavy, R. (ed.) CSOC2018 2018. AISC, vol. 765, pp. 109–115. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91192-2_12

    Chapter  Google Scholar 

  21. Smolik, M., Skala, V.: Classification of critical points using a second order derivative. Procedia Comput. Sci. 108, 2373–2377 (2017)

    Article  Google Scholar 

  22. Smolik, M., Skala, V.: Large scattered data interpolation with radial basis functions and space subdivision. Integr. Comput.-Aided Eng. 25(1), 49–62 (2018)

    Article  Google Scholar 

  23. Smolik, M., Skala, V., Majdisova, Z.: 3D vector field approximation and critical points reduction using radial basis functions. In: International Conference on Applied Physics, System Science and Computers. Springer (2018)

    Google Scholar 

  24. Smolik, M., Skala, V., Majdisova, Z.: Vector field radial basis function approximation. Adv. Eng. Softw. 123(1), 117–129 (2018)

    Article  Google Scholar 

  25. Süßmuth, J., Meyer, Q., Greiner, G.: Surface reconstruction based on hierarchical floating radial basis functions. Comput. Graph. Forum 29(6), 1854–1864 (2010)

    Article  Google Scholar 

  26. Tricoche, X., Scheuermann, G., Hagen, H.: A topology simplification method for 2D vector fields. In: Visualization 2000, Proceedings, pp. 359–366. IEEE (2000)

    Google Scholar 

  27. Weinkauf, T., Theisel, H., Shi, K., Hege, H.-C., Seidel, H.-P.: Extracting higher order critical points and topological simplification of 3D vector fields. In: Visualization, 2005, VIS 2005, pp. 559–566. IEEE (2005)

    Google Scholar 

  28. Yang, J., Wang, Z., Zhu, C., Peng, Q.: Implicit surface reconstruction with radial basis functions. In: Braz, J., Ranchordas, A., Araújo, H.J., Pereira, J.M. (eds.) VISIGRAPP 2007. CCIS, vol. 21, pp. 5–12. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89682-1_1

    Chapter  Google Scholar 

  29. Yokota, R., Barba, L.A., Knepley, M.G.: PetRBF-a parallel O(N) algorithm for radial basis function interpolation with gaussians. Comput. Methods Appl. Mech. Eng. 199(25), 1793–1804 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank their colleagues at the University of West Bohemia, Plzen, for their discussions and suggestions. The research was supported by projects Czech Science Foundation (GACR) No. GA17-05534S and partially by SGS 2019-016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Smolik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smolik, M., Skala, V. (2019). Efficient Simple Large Scattered 3D Vector Fields Radial Basis Functions Approximation Using Space Subdivision. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24289-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24288-6

  • Online ISBN: 978-3-030-24289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics